Statistical Field Theory For Neural Networks

DOWNLOAD
Download Statistical Field Theory For Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Field Theory For Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Statistical Field Theory For Neural Networks
DOWNLOAD
Author : Moritz Helias
language : en
Publisher: Springer Nature
Release Date : 2020-08-20
Statistical Field Theory For Neural Networks written by Moritz Helias and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-20 with Science categories.
This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.
Statistical Mechanics Of Neural Networks
DOWNLOAD
Author : Haiping Huang
language : en
Publisher: Springer Nature
Release Date : 2022-01-04
Statistical Mechanics Of Neural Networks written by Haiping Huang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-04 with Science categories.
This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.
The Principles Of Deep Learning Theory
DOWNLOAD
Author : Daniel A. Roberts
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-26
The Principles Of Deep Learning Theory written by Daniel A. Roberts and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-26 with Computers categories.
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
An Introduction To The Theory Of Spin Glasses And Neural Networks
DOWNLOAD
Author : Viktor Dotsenko
language : en
Publisher: World Scientific
Release Date : 1994
An Introduction To The Theory Of Spin Glasses And Neural Networks written by Viktor Dotsenko and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with Science categories.
This book aims to describe in simple terms the new area of statistical mechanics known as spin-glasses, encompassing systems in which quenched disorder is the dominant factor. The book begins with a non-mathematical explanation of the problem, and the modern understanding of the physics of the spin-glass state is formulated in general terms. Next, the 'magic' of the replica symmetry breaking scheme is demonstrated and the physics behind it discussed. Recent experiments on real spin-glass materials are briefly described to demonstrate how this somewhat abstract physics can be studied in the laboratory. The final chapters of the book are devoted to statistical models of neural networks.The material here is self-contained and should be accessible to students with a basic knowledge of theoretical physics and statistical mechanics. It has been used for a one-term graduate lecture course at the Landau Institute for Theoretical Physics.
Neural Network Modeling
DOWNLOAD
Author : P. S. Neelakanta
language : en
Publisher: CRC Press
Release Date : 2018-02-06
Neural Network Modeling written by P. S. Neelakanta and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-06 with Technology & Engineering categories.
Neural Network Modeling offers a cohesive approach to the statistical mechanics and principles of cybernetics as a basis for neural network modeling. It brings together neurobiologists and the engineers who design intelligent automata to understand the physics of collective behavior pertinent to neural elements and the self-control aspects of neurocybernetics. The theoretical perspectives and explanatory projections portray the most current information in the field, some of which counters certain conventional concepts in the visualization of neuronal interactions.
Markov Chain Monte Carlo Methods In Quantum Field Theories
DOWNLOAD
Author : Anosh Joseph
language : en
Publisher: Springer
Release Date : 2020-04-17
Markov Chain Monte Carlo Methods In Quantum Field Theories written by Anosh Joseph and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-17 with Science categories.
This primer is a comprehensive collection of analytical and numerical techniques that can be used to extract the non-perturbative physics of quantum field theories. The intriguing connection between Euclidean Quantum Field Theories (QFTs) and statistical mechanics can be used to apply Markov Chain Monte Carlo (MCMC) methods to investigate strongly coupled QFTs. The overwhelming amount of reliable results coming from the field of lattice quantum chromodynamics stands out as an excellent example of MCMC methods in QFTs in action. MCMC methods have revealed the non-perturbative phase structures, symmetry breaking, and bound states of particles in QFTs. The applications also resulted in new outcomes due to cross-fertilization with research areas such as AdS/CFT correspondence in string theory and condensed matter physics. The book is aimed at advanced undergraduate students and graduate students in physics and applied mathematics, and researchers in MCMC simulations and QFTs. At the end of this book the reader will be able to apply the techniques learned to produce more independent and novel research in the field.
Feedforward Neural Network Methodology
DOWNLOAD
Author : Terrence L. Fine
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-06
Feedforward Neural Network Methodology written by Terrence L. Fine and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-06 with Computers categories.
This decade has seen an explosive growth in computational speed and memory and a rapid enrichment in our understanding of artificial neural networks. These two factors provide systems engineers and statisticians with the ability to build models of physical, economic, and information-based time series and signals. This book provides a thorough and coherent introduction to the mathematical properties of feedforward neural networks and to the intensive methodology which has enabled their highly successful application to complex problems.
Statistical Machine Learning
DOWNLOAD
Author : Richard Golden
language : en
Publisher: CRC Press
Release Date : 2020-06-24
Statistical Machine Learning written by Richard Golden and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-24 with Computers categories.
The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms. Features: Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms Matrix calculus methods for supporting machine learning analysis and design applications Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. About the Author: Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.
Learning In Graphical Models
DOWNLOAD
Author : M.I. Jordan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Learning In Graphical Models written by M.I. Jordan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.
Artificial Neural Networks Icann 96
DOWNLOAD
Author : Christoph von der Malsburg
language : en
Publisher: Springer Science & Business Media
Release Date : 1996-07-10
Artificial Neural Networks Icann 96 written by Christoph von der Malsburg and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-07-10 with Computers categories.
This book constitutes the refereed proceedings of the sixth International Conference on Artificial Neural Networks - ICANN 96, held in Bochum, Germany in July 1996. The 145 papers included were carefully selected from numerous submissions on the basis of at least three reviews; also included are abstracts of the six invited plenary talks. All in all, the set of papers presented reflects the state of the art in the field of ANNs. Among the topics and areas covered are a broad spectrum of theoretical aspects, applications in various fields, sensory processing, cognitive science and AI, implementations, and neurobiology.