Statistical Learning For Biomedical Data

DOWNLOAD
Download Statistical Learning For Biomedical Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Learning For Biomedical Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Statistical Learning For Biomedical Data
DOWNLOAD
Author : James D. Malley
language : en
Publisher: Cambridge University Press
Release Date : 2011-02-24
Statistical Learning For Biomedical Data written by James D. Malley and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-24 with Medical categories.
This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random ForestsTM, neural nets, support vector machines, nearest neighbors and boosting.
An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30
An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Statistical Learning For Biomedical Data
DOWNLOAD
Author : James D. Malley
language : en
Publisher:
Release Date : 2011
Statistical Learning For Biomedical Data written by James D. Malley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Biometry categories.
Introduction To Biomedical Data Science
DOWNLOAD
Author : Robert Hoyt
language : en
Publisher: Lulu.com
Release Date : 2019-11-24
Introduction To Biomedical Data Science written by Robert Hoyt and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-24 with Science categories.
Overview of biomedical data science -- Spreadsheet tools and tips -- Biostatistics primer -- Data visualization -- Introduction to databases -- Big data -- Bioinformatics and precision medicine -- Programming languages for data analysis -- Machine learning -- Artificial intelligence -- Biomedical data science resources -- Appendix A: Glossary -- Appendix B: Using data.world -- Appendix C: Chapter exercises.
Statistical Modeling For Biomedical Researchers
DOWNLOAD
Author : William D. Dupont
language : en
Publisher: Cambridge University Press
Release Date : 2009-02-12
Statistical Modeling For Biomedical Researchers written by William D. Dupont and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-12 with Medical categories.
A second edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.
Quantitative Medical Data Analysis Using Mathematical Tools And Statistical Techniques
DOWNLOAD
Author : Don Hong
language : en
Publisher: World Scientific
Release Date : 2007-07-10
Quantitative Medical Data Analysis Using Mathematical Tools And Statistical Techniques written by Don Hong and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-10 with Medical categories.
Quantitative biomedical data analysis is a fast-growing interdisciplinary area of applied and computational mathematics, statistics, computer science, and biomedical science, leading to new fields such as bioinformatics, biomathematics, and biostatistics. In addition to traditional statistical techniques and mathematical models using differential equations, new developments with a very broad spectrum of applications, such as wavelets, spline functions, curve and surface subdivisions, sampling, and learning theory, have found their mathematical home in biomedical data analysis.This book gives a new and integrated introduction to quantitative medical data analysis from the viewpoint of biomathematicians, biostatisticians, and bioinformaticians. It offers a definitive resource to bridge the disciplines of mathematics, statistics, and biomedical sciences. Topics include mathematical models for cancer invasion and clinical sciences, data mining techniques and subset selection in data analysis, survival data analysis and survival models for cancer patients, statistical analysis and neural network techniques for genomic and proteomic data analysis, wavelet and spline applications for mass spectrometry data preprocessing and statistical computing.
Practical Machine Learning For Data Analysis Using Python
DOWNLOAD
Author : Abdulhamit Subasi
language : en
Publisher: Academic Press
Release Date : 2020-06-07
Practical Machine Learning For Data Analysis Using Python written by Abdulhamit Subasi and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-07 with Computers categories.
Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems.
Advanced Machine Learning For Complex Medical Data Analysis
DOWNLOAD
Author : Saumendra Kumar Mohapatra, Mihir Narayan Mohanty, Rashmita Khilar
language : en
Publisher: Bentham Science Publishers
Release Date : 2025-05-13
Advanced Machine Learning For Complex Medical Data Analysis written by Saumendra Kumar Mohapatra, Mihir Narayan Mohanty, Rashmita Khilar and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-13 with Computers categories.
Advanced Machine Learning for Complex Medical Data Analysis is a definitive guide to leveraging machine learning to solve critical challenges in medical data analysis. This book discusses cutting-edge methodologies, from predictive modeling to neural networks, tailored to address the unique complexities of medical and healthcare data. It combines theoretical frameworks with practical applications, ensuring readers gain a comprehensive understanding of both concepts and real-world implementations. The book covers diverse topics, including medical image denoising, the transformative role of GANs, IoT applications in healthcare, early disease detection using speech data, and COVID detection using autoencoders. It also explores the impact of big data, statistical approaches to medical analytics, and public health improvements through technology. Key Features: - Practical insights into deploying advanced machine learning models for healthcare. - Real-world case studies on diverse diseases and datasets. - Cutting-edge topics like explainable AI, federated learning, and ethical considerations. - Methods for improving data accuracy, efficiency, and privacy.
Practical Statistical Learning And Data Science Methods
DOWNLOAD
Author : O. Olawale Awe
language : en
Publisher: Springer Nature
Release Date : 2024-12-27
Practical Statistical Learning And Data Science Methods written by O. Olawale Awe and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-27 with Computers categories.
This contributed volume offers practical implementation strategies for statistical learning and data science techniques, with fully peer-reviewed papers that embody insights and experiences gathered within the LISA 2020 Global Network. Through a series of compelling case studies, readers are immersed in practical methodologies, real-world applications, and innovative approaches in statistical learning and data science. Topics covered in this volume span a wide array of applications, including machine learning in health data analysis, deep learning models for precipitation modeling, interpretation techniques for machine learning models in BMI classification for obesity studies, as well as a comparative analysis of sampling methods in machine learning health applications. By addressing the evolving landscape of data analytics in many ways, this volume serves as a valuable resource for practitioners, researchers, and students alike. The LISA 2020 Global Network is dedicated to enhancing statistical and data science capabilities in developing countries through the establishment of collaboration laboratories, also known as “stat labs.” These stat labs function as engines for development, nurturing the next generation of collaborative statisticians and data scientists while providing essential research infrastructure for researchers, data producers, and decision-makers.