[PDF] Statistical Methods For Machine Learning - eBooks Review

Statistical Methods For Machine Learning


Statistical Methods For Machine Learning
DOWNLOAD

Download Statistical Methods For Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Methods For Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistical Methods For Machine Learning


Statistical Methods For Machine Learning
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2018-05-30

Statistical Methods For Machine Learning written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-30 with Computers categories.


Statistics is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in statistics that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of statistical methods to machine learning, summary stats, hypothesis testing, nonparametric stats, resampling methods, and much more.



An Introduction To Statistical Learning


An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30

An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.


An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.



Statistical Machine Learning


Statistical Machine Learning
DOWNLOAD
Author : Richard Golden
language : en
Publisher: CRC Press
Release Date : 2020-06-24

Statistical Machine Learning written by Richard Golden and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-24 with Computers categories.


The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms. Features: Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms Matrix calculus methods for supporting machine learning analysis and design applications Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. About the Author: Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.



Choosing Chinese Universities


Choosing Chinese Universities
DOWNLOAD
Author : Alice Y.C. Te
language : en
Publisher: Routledge
Release Date : 2022-10-07

Choosing Chinese Universities written by Alice Y.C. Te and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-07 with Education categories.


This book unpacks the complex dynamics of Hong Kong students’ choice in pursuing undergraduate education at the universities of Mainland China. Drawing on an empirical study based on interviews with 51 students, this book investigates how macro political/economic factors, institutional influences, parental influence, and students’ personal motivations have shaped students’ eventual choice of university. Building on Perna’s integrated model of college choice and Lee’s push-pull mobility model, this book conceptualizes that students’ border crossing from Hong Kong to Mainland China for higher education is a trans-contextualized negotiated choice under the "One Country, Two Systems" principle. The findings reveal that during the decision-making process, influencing factors have conditioned four archetypes of student choice: Pragmatists, Achievers, Averages, and Underachievers. The book closes by proposing an enhanced integrated model of college choice that encompasses both rational motives and sociological factors, and examines the theoretical significance and practical implications of the qualitative study. With its focus on student choice and experiences of studying in China, this book’s research and policy findings will interest researchers, university administrators, school principals, and teachers.



Introduction To Statistical And Machine Learning Methods For Data Science


Introduction To Statistical And Machine Learning Methods For Data Science
DOWNLOAD
Author : Carlos Andre Reis Pinheiro
language : en
Publisher: SAS Institute
Release Date : 2021-08-06

Introduction To Statistical And Machine Learning Methods For Data Science written by Carlos Andre Reis Pinheiro and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-06 with Computers categories.


Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.



Introduction To Statistical Machine Learning


Introduction To Statistical Machine Learning
DOWNLOAD
Author : Masashi Sugiyama
language : zh-CN
Publisher:
Release Date : 2018

Introduction To Statistical Machine Learning written by Masashi Sugiyama and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Machine learning categories.




Multivariate Statistical Machine Learning Methods For Genomic Prediction


Multivariate Statistical Machine Learning Methods For Genomic Prediction
DOWNLOAD
Author : Osval Antonio Montesinos López
language : en
Publisher: Springer Nature
Release Date : 2022-02-14

Multivariate Statistical Machine Learning Methods For Genomic Prediction written by Osval Antonio Montesinos López and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-14 with Technology & Engineering categories.


This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.



Statistics For Machine Learning


Statistics For Machine Learning
DOWNLOAD
Author : Himanshu Singh
language : en
Publisher: BPB Publications
Release Date : 2021-01-15

Statistics For Machine Learning written by Himanshu Singh and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-15 with Computers categories.


A practical guide that will help you understand the Statistical Foundations of any Machine Learning Problem Ê KEY FEATURESÊ _ Develop a Conceptual and Mathematical understanding of Statistics _ Get an overview of Statistical Applications in Python _ Learn how to perform Hypothesis testing in Statistics _ Understand why Statistics is important in Machine Learning _ Learn how to process data in Python Ê DESCRIPTIONÊÊ This book talks about Statistical concepts in detail, with its applications in Python. The book starts with an introduction to Statistics and moves on to cover some basic Descriptive Statistics concepts such as mean, median, mode, etc.Ê You will then explore the concept of Probability and look at different types of Probability Distributions. Next, you will look at parameter estimations for the unknown parameters present in the population and look at Random Variables in detail, which are used to save the results of an experiment in Statistics. You will then explore one of the most important fields in Statistics - Hypothesis Testing, and then explore various types of tests used to check our hypothesis. The last part of our book will focus on how you can process data using Python, some elements of Non-parametric statistics, and finally, some introduction to Machine Learning. Ê WHAT YOU WILLÊ LEARNÊÊ _ Understand the basics of Statistics _ Get to know more about Descriptive Statistics _ Understand and learn advanced Statistics techniques _ Learn how to apply Statistical concepts in Python _ Understand important Python packages for Statistics and Machine Learning Ê WHO THIS BOOK IS FORÊ This book is for anyone who wants to understand Statistics and its use in Machine Learning. This book will help you understand the Mathematics behind the Statistical concepts and the applications using the Python language. Having a working knowledge of the Python language is a prerequisite. TABLE OF CONTENTSÊ 1. Introduction to Statistics 2. Descriptive Statistics 3. Probability 4. Random Variables 5. Parameter Estimations 6. Hypothesis Testing 7. Analysis of Variance 8. Regression 9. Non Parametric Statistics 10. Data Analysis using Python 11. Introduction to Machine Learning



Statistical Reinforcement Learning


Statistical Reinforcement Learning
DOWNLOAD
Author : Masashi Sugiyama
language : en
Publisher: CRC Press
Release Date : 2015-03-16

Statistical Reinforcement Learning written by Masashi Sugiyama and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-16 with Business & Economics categories.


Reinforcement learning (RL) is a framework for decision making in unknown environments based on a large amount of data. Several practical RL applications for business intelligence, plant control, and gaming have been successfully explored in recent years. Providing an accessible introduction to the field, this book covers model-based and model-free approaches, policy iteration, and policy search methods. It presents illustrative examples and state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. The book provides a bridge between RL and data mining and machine learning research.