Statistics Data Mining And Machine Learning In Astronomy

DOWNLOAD
Download Statistics Data Mining And Machine Learning In Astronomy PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistics Data Mining And Machine Learning In Astronomy book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Statistics Data Mining And Machine Learning In Astronomy
DOWNLOAD
Author : Željko Ivezić
language : en
Publisher: Princeton University Press
Release Date : 2014-01-12
Statistics Data Mining And Machine Learning In Astronomy written by Željko Ivezić and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-12 with Science categories.
As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers
Advances In Machine Learning And Data Mining For Astronomy
DOWNLOAD
Author : Michael J. Way
language : en
Publisher: CRC Press
Release Date : 2012-03-29
Advances In Machine Learning And Data Mining For Astronomy written by Michael J. Way and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-29 with Computers categories.
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book’s introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
Statistical Methods For Astronomical Data Analysis
DOWNLOAD
Author : Asis Kumar Chattopadhyay
language : en
Publisher: Springer
Release Date : 2014-10-01
Statistical Methods For Astronomical Data Analysis written by Asis Kumar Chattopadhyay and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-01 with Mathematics categories.
This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for astronomical problems, including regression techniques, along with their usefulness for data set problems related to size and dimension. Analysis of missing data is an important part of the book because of its significance for work with astronomical data. Both existing and new techniques related to dimension reduction and clustering are illustrated through examples. There is detailed coverage of applications useful for classification, discrimination, data mining and time series analysis. Later chapters explain simulation techniques useful for the development of physical models where it is difficult or impossible to collect data. Finally, coverage of the many R programs for techniques discussed makes this book a fantastic practical reference. Readers may apply what they learn directly to their data sets in addition to the data sets included by the authors.
Scientific Data Mining
DOWNLOAD
Author : Chandrika Kamath
language : en
Publisher: SIAM
Release Date : 2009-06-04
Scientific Data Mining written by Chandrika Kamath and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-04 with Mathematics categories.
Chandrika Kamath describes how techniques from the multi-disciplinary field of data mining can be used to address the modern problem of data overload in science and engineering domains. Starting with a survey of analysis problems in different applications, it identifies the common themes across these domains.
Introduction To Statistical Machine Learning
DOWNLOAD
Author : Masashi Sugiyama
language : zh-CN
Publisher:
Release Date : 2018
Introduction To Statistical Machine Learning written by Masashi Sugiyama and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Machine learning categories.
The Statistical Physics Of Data Assimilation And Machine Learning
DOWNLOAD
Author : Henry D. I. Abarbanel
language : en
Publisher: Cambridge University Press
Release Date : 2022-02-17
The Statistical Physics Of Data Assimilation And Machine Learning written by Henry D. I. Abarbanel and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-17 with Computers categories.
The theory of data assimilation and machine learning is introduced in an accessible manner for undergraduate and graduate students.
Data Mining And Analysis
DOWNLOAD
Author : Mohammed J. Zaki
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-12
Data Mining And Analysis written by Mohammed J. Zaki and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-12 with Computers categories.
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Data Mining And Data Visualization
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2005-05-02
Data Mining And Data Visualization written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-05-02 with Mathematics categories.
Data Mining and Data Visualization focuses on dealing with large-scale data, a field commonly referred to as data mining. The book is divided into three sections. The first deals with an introduction to statistical aspects of data mining and machine learning and includes applications to text analysis, computer intrusion detection, and hiding of information in digital files. The second section focuses on a variety of statistical methodologies that have proven to be effective in data mining applications. These include clustering, classification, multivariate density estimation, tree-based methods, pattern recognition, outlier detection, genetic algorithms, and dimensionality reduction. The third section focuses on data visualization and covers issues of visualization of high-dimensional data, novel graphical techniques with a focus on human factors, interactive graphics, and data visualization using virtual reality. This book represents a thorough cross section of internationally renowned thinkers who are inventing methods for dealing with a new data paradigm. - Distinguished contributors who are international experts in aspects of data mining - Includes data mining approaches to non-numerical data mining including text data, Internet traffic data, and geographic data - Highly topical discussions reflecting current thinking on contemporary technical issues, e.g. streaming data - Discusses taxonomy of dataset sizes, computational complexity, and scalability usually ignored in most discussions - Thorough discussion of data visualization issues blending statistical, human factors, and computational insights
Data Mining In Time Series Databases
DOWNLOAD
Author : Horst Bunke
language : en
Publisher: World Scientific
Release Date : 2004-06-25
Data Mining In Time Series Databases written by Horst Bunke and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-06-25 with Computers categories.
Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This book covers the state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the book also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed.
Statistics Data Mining And Machine Learning In Astronomy
DOWNLOAD
Author : Željko Ivezić
language : en
Publisher: Princeton University Press
Release Date : 2020
Statistics Data Mining And Machine Learning In Astronomy written by Željko Ivezić and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
"As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. The updates in this new edition will include fixing "code rot," correcting errata, and adding some new sections. In particular, the new sections include new material on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest"--