Statistics For Data Scientists

DOWNLOAD
Download Statistics For Data Scientists PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistics For Data Scientists book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter Bruce
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-10
Practical Statistics For Data Scientists written by Peter Bruce and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-10 with Computers categories.
Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter Bruce
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-04-10
Practical Statistics For Data Scientists written by Peter Bruce and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-10 with Computers categories.
Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what’s important and what’s not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher-quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that "learn" from data Unsupervised learning methods for extracting meaning from unlabeled data
Foundations Of Statistics For Data Scientists
DOWNLOAD
Author : Alan Agresti
language : en
Publisher: CRC Press
Release Date : 2021-11-29
Foundations Of Statistics For Data Scientists written by Alan Agresti and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-29 with Business & Economics categories.
Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. Key Features: Shows the elements of statistical science that are important for students who plan to become data scientists. Includes Bayesian and regularized fitting of models (e.g., showing an example using the lasso), classification and clustering, and implementing methods with modern software (R and Python). Contains nearly 500 exercises. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website (http://stat4ds.rwth-aachen.de/) has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.
Statistics For Data Scientists And Analysts
DOWNLOAD
Author : Dipendra Pant
language : en
Publisher: BPB Publications
Release Date : 2025-01-07
Statistics For Data Scientists And Analysts written by Dipendra Pant and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-07 with Computers categories.
DESCRIPTION Statistics is a powerful tool for data analysis, visualization, and inference. Python is a popular programming language that offers a rich set of libraries and frameworks for statistical computing. Together, they can help you solve real-world problems and make informed decisions based on data. This book teaches you how to use Python to implement statistical concepts and techniques in a practical and effective way. You will also learn how to perform data science and analysis to generate insights, patterns, and trends. This book introduces the basics of statistics, such as descriptive and inferential statistics, ML, probability distributions, hypothesis testing, and confidence intervals. It also covers advanced topics such as regression analysis, linear algebra, statistical tests, time series, survival, and correlation analysis. You will learn how to identify patterns, interpret data, and make data-driven decisions. The book emphasizes practical learning with examples, exercises, and code snippets using popular Python libraries like NumPy, Pandas, Matplotlib, Seaborn, and SciPy to perform various statistical tasks. By the end of this book, you will have a solid foundation in statistics and Python programming. You will be able to explore, analyze, and visualize data using Python. You will also be able to perform various statistical tests and interpret the results. KEY FEATURES ● Learn how to analyze data using statistics, with a focus on cutting-edge statistical methods, modeling, and visualization. ● Explore topics from basic to advanced, including data visualization, statistics, machine learning (ML), and large language models (LLMs). ● Includes clear examples, hands-on tutorials, and a real-world project to apply all concepts. WHAT YOU WILL LEARN ● Master data manipulation, cleaning, and visualization techniques using Python. ● Apply core statistical methods to analyze real-world datasets. ● Build and evaluate statistical models for regression, classification, and clustering. ● Interpret and communicate insights derived from statistical analyses effectively. ● Explore advanced statistical techniques like time series and survival analysis. WHO THIS BOOK IS FOR This book is ideal for data scientists, ML engineers, statisticians, Python practitioners, researchers, and anyone who works with data and statistics. TABLE OF CONTENTS 1. Foundations of Data Analysis and Python 2. Exploratory Data Analysis 3. Frequency Distribution, Central Tendency, Variability 4. Unravelling Statistical Relationships 5. Estimation and Confidence Intervals 6. Hypothesis and Significance Testing 7. Statistical Machine Learning 8. Unsupervised Machine Learning 9. Linear Algebra, Nonparametric Statistics, and Time Series Analysis 10. Generative AI and Prompt Engineering 11. Real World Statistical Applications
Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter C. Bruce
language : en
Publisher:
Release Date : 2017
Practical Statistics For Data Scientists written by Peter C. Bruce and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Big data categories.
"Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you'll learn: Why exploratory data analysis is a key preliminary step in data science ; How random sampling can reduce bias and yield a higher quality dataset, even with big data ; How the principles of experimental design yield definitive answers to questions ; How to use regression to estimate outcomes and detect anomalies ; Key classification techniques for predicting which categories a record belongs to ; Statistical machine learning methods that 'learn' from data ; Unsupervised learning methods for extracting meaning from unlabeled data"--Provided by publisher.
Statistics For Data Science
DOWNLOAD
Author : James D. Miller
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-11-17
Statistics For Data Science written by James D. Miller and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-17 with Computers categories.
Get your statistics basics right before diving into the world of data science About This Book No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs; Implement statistics in data science tasks such as data cleaning, mining, and analysis Learn all about probability, statistics, numerical computations, and more with the help of R programs Who This Book Is For This book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful. What You Will Learn Analyze the transition from a data developer to a data scientist mindset Get acquainted with the R programs and the logic used for statistical computations Understand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and more Learn to implement statistics in data science tasks such as data cleaning, mining, and analysis Learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks Get comfortable with performing various statistical computations for data science programmatically In Detail Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on. This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks. By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically. Style and approach Step by step comprehensive guide with real world examples
Statistics For Data Scientists
DOWNLOAD
Author : Maurits Kaptein
language : en
Publisher: Springer Nature
Release Date : 2022-02-02
Statistics For Data Scientists written by Maurits Kaptein and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-02 with Computers categories.
This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis – supported by numerous real data examples and reusable [R] code – with a rigorous treatment of probability and statistical principles. Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.
Practical Statistics For Data Scientists 2nd Edition
DOWNLOAD
Author : Peter Bruce
language : en
Publisher:
Release Date : 2020
Practical Statistics For Data Scientists 2nd Edition written by Peter Bruce and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.
Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this practical guide-now including examples in Python as well as R-explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data scientists use statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages, and have had some exposure to statistics but want to learn more, this quick reference bridges the gap in an accessible, readable format. With this updated edition, you'll dive into: Exploratory data analysis Data and sampling distributions Statistical experiments and significance testing Regression and prediction Classification Statistical machine learning Unsupervised learning.
Statistical Data Science
DOWNLOAD
Author : Niall M Adams
language : en
Publisher: World Scientific
Release Date : 2018-04-24
Statistical Data Science written by Niall M Adams and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-24 with Computers categories.
As an emerging discipline, data science broadly means different things across different areas. Exploring the relationship of data science with statistics, a well-established and principled data-analytic discipline, this book provides insights about commonalities in approach, and differences in emphasis.Featuring chapters from established authors in both disciplines, the book also presents a number of applications and accompanying papers.
Probability And Statistics For Data Science
DOWNLOAD
Author : Norman Matloff
language : en
Publisher: CRC Press
Release Date : 2019-06-21
Probability And Statistics For Data Science written by Norman Matloff and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-21 with Business & Economics categories.
Probability and Statistics for Data Science: Math + R + Data covers "math stat"—distributions, expected value, estimation etc.—but takes the phrase "Data Science" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture." * Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming. Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.