Stochastic Adaptive Search For Global Optimization

DOWNLOAD
Download Stochastic Adaptive Search For Global Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Adaptive Search For Global Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Stochastic Adaptive Search For Global Optimization
DOWNLOAD
Author : Z.B. Zabinsky
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-09-30
Stochastic Adaptive Search For Global Optimization written by Z.B. Zabinsky and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-09-30 with Computers categories.
The book overviews several stochastic adaptive search methods for global optimization and provides analytical results regarding their performance and complexity. It develops a class of hit-and-run algorithms that are theoretically motivated and do not require fine-tuning of parameters. Several engineering global optimization problems are summarized to demonstrate the kinds of practical problems that are now within reach. Audience: This book is suitable for graduate students, researchers and practitioners in operations research, engineering, and mathematics.
Stochastic Adaptive Search For Global Optimization
DOWNLOAD
Author : Z.B. Zabinsky
language : en
Publisher: Springer
Release Date : 2013-12-04
Stochastic Adaptive Search For Global Optimization written by Z.B. Zabinsky and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-04 with Mathematics categories.
The field of global optimization has been developing at a rapid pace. There is a journal devoted to the topic, as well as many publications and notable books discussing various aspects of global optimization. This book is intended to complement these other publications with a focus on stochastic methods for global optimization. Stochastic methods, such as simulated annealing and genetic algo rithms, are gaining in popularity among practitioners and engineers be they are relatively easy to program on a computer and may be cause applied to a broad class of global optimization problems. However, the theoretical performance of these stochastic methods is not well under stood. In this book, an attempt is made to describe the theoretical prop erties of several stochastic adaptive search methods. Such a theoretical understanding may allow us to better predict algorithm performance and ultimately design new and improved algorithms. This book consolidates a collection of papers on the analysis and de velopment of stochastic adaptive search. The first chapter introduces random search algorithms. Chapters 2-5 describe the theoretical anal ysis of a progression of algorithms. A main result is that the expected number of iterations for pure adaptive search is linear in dimension for a class of Lipschitz global optimization problems. Chapter 6 discusses algorithms, based on the Hit-and-Run sampling method, that have been developed to approximate the ideal performance of pure random search. The final chapter discusses several applications in engineering that use stochastic adaptive search methods.
Handbook Of Global Optimization
DOWNLOAD
Author : Panos M. Pardalos
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-18
Handbook Of Global Optimization written by Panos M. Pardalos and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-18 with Mathematics categories.
In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.
Stochastic Global Optimization
DOWNLOAD
Author : Gade Pandu Rangaiah
language : en
Publisher: World Scientific
Release Date : 2010
Stochastic Global Optimization written by Gade Pandu Rangaiah and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Computers categories.
Ch. 1. Introduction / Gade Pandu Rangaiah -- ch. 2. Formulation and illustration of Luus-Jaakola optimization procedure / Rein Luus -- ch. 3. Adaptive random search and simulated annealing optimizers : algorithms and application issues / Jacek M. Jezowski, Grzegorz Poplewski and Roman Bochenek -- ch. 4. Genetic algorithms in process engineering : developments and implementation issues / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 5. Tabu search for global optimization of problems having continuous variables / Sim Mong Kai, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 6. Differential evolution : method, developments and chemical engineering applications / Chen Shaoqiang, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 7. Ant colony optimization : details of algorithms suitable for process engineering / V.K. Jayaraman [und weitere] -- ch. 8. Particle swarm optimization for solving NLP and MINLP in chemical engineering / Bassem Jarboui [und weitere] -- ch. 9. An introduction to the harmony search algorithm / Gordon Ingram and Tonghua Zhang -- ch. 10. Meta-heuristics : evaluation and reporting techniques / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 11. A hybrid approach for constraint handling in MINLP optimization using stochastic algorithms / G.A. Durand [und weitere] -- ch. 12. Application of Luus-Jaakola optimization procedure to model reduction, parameter estimation and optimal control / Rein Luus -- ch. 13. Phase stability and equilibrium calculations in reactive systems using differential evolution and tabu search / Adrian Bonilla-Petriciolet [und weitere] -- ch. 14. Differential evolution with tabu list for global optimization : evaluation of two versions on benchmark and phase stability problems / Mekapati Srinivas and Gade Pandu Rangaiah -- ch. 15. Application of adaptive random search optimization for solving industrial water allocation problem / Grzegorz Poplewski and Jacek M. Jezowski -- ch. 16. Genetic algorithms formulation for retrofitting heat exchanger network / Roman Bochenek and Jacek M. Jezowski -- ch. 17. Ant colony optimization for classification and feature selection / V.K. Jayaraman [und weitere] -- ch. 18. Constraint programming and genetic algorithm / Prakash R. Kotecha, Mani Bhushan and Ravindra D. Gudi -- ch. 19. Schemes and implementations of parallel stochastic optimization algorithms application of tabu search to chemical engineering problems / B. Lin and D.C. Miller
Stochastic Global Optimization
DOWNLOAD
Author : Anatoly Zhigljavsky
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-11-20
Stochastic Global Optimization written by Anatoly Zhigljavsky and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-20 with Mathematics categories.
This book aims to cover major methodological and theoretical developments in the ?eld of stochastic global optimization. This ?eld includes global random search and methods based on probabilistic assumptions about the objective function. We discuss the basic ideas lying behind the main algorithmic schemes, formulate the most essential algorithms and outline the ways of their theor- ical investigation. We try to be mathematically precise and sound but at the same time we do not often delve deep into the mathematical detail, referring instead to the corresponding literature. We often do not consider the most g- eral assumptions, preferring instead simplicity of arguments. For example, we only consider continuous ?nite dimensional optimization despite the fact that some of the methods can easily be modi?ed for discrete or in?nite-dimensional optimization problems. The authors’ interests and the availability of good surveys on particular topics have in uenced the choice of material in the book. For example, there are excellent surveys on simulated annealing (both on theoretical and - plementation aspects of this method) and evolutionary algorithms (including genetic algorithms). We thus devote much less attention to these topics than they merit, concentrating instead on the issues which are not that well d- umented in literature. We also spend more time discussing the most recent ideas which have been proposed in the last few years.
Global Optimization In Action
DOWNLOAD
Author : János D. Pintér
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
Global Optimization In Action written by János D. Pintér and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
In science, engineering and economics, decision problems are frequently modelled by optimizing the value of a (primary) objective function under stated feasibility constraints. In many cases of practical relevance, the optimization problem structure does not warrant the global optimality of local solutions; hence, it is natural to search for the globally best solution(s). Global Optimization in Action provides a comprehensive discussion of adaptive partition strategies to solve global optimization problems under very general structural requirements. A unified approach to numerous known algorithms makes possible straightforward generalizations and extensions, leading to efficient computer-based implementations. A considerable part of the book is devoted to applications, including some generic problems from numerical analysis, and several case studies in environmental systems analysis and management. The book is essentially self-contained and is based on theauthor's research, in cooperation (on applications) with a number of colleagues. Audience: Professors, students, researchers and other professionals in the fields of operations research, management science, industrial and applied mathematics, computer science, engineering, economics and the environmental sciences.
State Of The Art In Global Optimization
DOWNLOAD
Author : Christodoulos A. Floudas
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-01
State Of The Art In Global Optimization written by Christodoulos A. Floudas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.
Optimization problems abound in most fields of science, engineering, and tech nology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver age, exponentially with the size of the problem (number of variables). Furthermore, most of the traditional approaches fail to escape from a local optimum in order to continue the search for the global solution. Global optimization has received a lot of attention in the past ten years, due to the success of new algorithms for solving large classes of problems from diverse areas such as engineering design and control, computational chemistry and biology, structural optimization, computer science, operations research, and economics. This book contains refereed invited papers presented at the conference on "State of the Art in Global Optimization: Computational Methods and Applications" held at Princeton University, April 28-30, 1995. The conference presented current re search on global optimization and related applications in science and engineering. The papers included in this book cover a wide spectrum of approaches for solving global optimization problems and applications.
Theory Of Randomized Search Heuristics
DOWNLOAD
Author : Anne Auger
language : en
Publisher: World Scientific
Release Date : 2011
Theory Of Randomized Search Heuristics written by Anne Auger and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Computers categories.
This volume covers both classical results and the most recent theoretical developments in the field of randomized search heuristics such as runtime analysis, drift analysis and convergence.
Optimization By Grasp
DOWNLOAD
Author : Mauricio G.C. Resende
language : en
Publisher: Springer
Release Date : 2018-05-03
Optimization By Grasp written by Mauricio G.C. Resende and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-03 with Mathematics categories.
This is the first book to cover GRASP (Greedy Randomized Adaptive Search Procedures), a metaheuristic that has enjoyed wide success in practice with a broad range of applications to real-world combinatorial optimization problems. The state-of-the-art coverage and carefully crafted pedagogical style lends this book highly accessible as an introductory text not only to GRASP, but also to combinatorial optimization, greedy algorithms, local search, and path-relinking, as well as to heuristics and metaheuristics, in general. The focus is on algorithmic and computational aspects of applied optimization with GRASP with emphasis given to the end-user, providing sufficient information on the broad spectrum of advances in applied optimization with GRASP. For the more advanced reader, chapters on hybridization with path-relinking and parallel and continuous GRASP present these topics in a clear and concise fashion. Additionally, the book offers a very complete annotated bibliography of GRASP and combinatorial optimization. For the practitioner who needs to solve combinatorial optimization problems, the book provides a chapter with four case studies and implementable templates for all algorithms covered in the text. This book, with its excellent overview of GRASP, will appeal to researchers and practitioners of combinatorial optimization who have a need to find optimal or near optimal solutions to hard combinatorial optimization problems.
Algorithms For Optimization
DOWNLOAD
Author : Mykel J. Kochenderfer
language : en
Publisher: MIT Press
Release Date : 2019-03-12
Algorithms For Optimization written by Mykel J. Kochenderfer and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-12 with Computers categories.
A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.