[PDF] Stochastic Calculus For Fractional Brownian Motion And Applications - eBooks Review

Stochastic Calculus For Fractional Brownian Motion And Applications


Stochastic Calculus For Fractional Brownian Motion And Applications
DOWNLOAD

Download Stochastic Calculus For Fractional Brownian Motion And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Calculus For Fractional Brownian Motion And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Stochastic Calculus For Fractional Brownian Motion And Applications


Stochastic Calculus For Fractional Brownian Motion And Applications
DOWNLOAD
Author : Francesca Biagini
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-02-17

Stochastic Calculus For Fractional Brownian Motion And Applications written by Francesca Biagini and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-02-17 with Mathematics categories.


Fractional Brownian motion (fBm) has been widely used to model a number of phenomena in diverse fields from biology to finance. This huge range of potential applications makes fBm an interesting object of study. Several approaches have been used to develop the concept of stochastic calculus for fBm. The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.



Stochastic Calculus For Fractional Brownian Motion And Related Processes


Stochastic Calculus For Fractional Brownian Motion And Related Processes
DOWNLOAD
Author : I︠U︡lii︠a︡ S. Mishura
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-01-02

Stochastic Calculus For Fractional Brownian Motion And Related Processes written by I︠U︡lii︠a︡ S. Mishura and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-02 with Mathematics categories.


This volume examines the theory of fractional Brownian motion and other long-memory processes. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. It proves that the market with stock guided by the mixed model is arbitrage-free without any restriction on the dependence of the components and deduces different forms of the Black-Scholes equation for fractional market.



Stochastic Calculus For Fractional Brownian Motion And Applications


Stochastic Calculus For Fractional Brownian Motion And Applications
DOWNLOAD
Author : Francesca Biagini
language : en
Publisher: Springer
Release Date : 2009-10-12

Stochastic Calculus For Fractional Brownian Motion And Applications written by Francesca Biagini and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-12 with Mathematics categories.


The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.



Analysis Of Variations For Self Similar Processes


Analysis Of Variations For Self Similar Processes
DOWNLOAD
Author : Ciprian Tudor
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-08-13

Analysis Of Variations For Self Similar Processes written by Ciprian Tudor and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-13 with Mathematics categories.


Self-similar processes are stochastic processes that are invariant in distribution under suitable time scaling, and are a subject intensively studied in the last few decades. This book presents the basic properties of these processes and focuses on the study of their variation using stochastic analysis. While self-similar processes, and especially fractional Brownian motion, have been discussed in several books, some new classes have recently emerged in the scientific literature. Some of them are extensions of fractional Brownian motion (bifractional Brownian motion, subtractional Brownian motion, Hermite processes), while others are solutions to the partial differential equations driven by fractional noises. In this monograph the author discusses the basic properties of these new classes of self-similar processes and their interrelationship. At the same time a new approach (based on stochastic calculus, especially Malliavin calculus) to studying the behavior of the variations of self-similar processes has been developed over the last decade. This work surveys these recent techniques and findings on limit theorems and Malliavin calculus.



Introduction To Stochastic Calculus With Applications


Introduction To Stochastic Calculus With Applications
DOWNLOAD
Author : Fima C. Klebaner
language : en
Publisher: Imperial College Press
Release Date : 2005

Introduction To Stochastic Calculus With Applications written by Fima C. Klebaner and has been published by Imperial College Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.



Brownian Motion And Stochastic Calculus


Brownian Motion And Stochastic Calculus
DOWNLOAD
Author : Ioannis Karatzas
language : en
Publisher: Springer
Release Date : 2014-03-27

Brownian Motion And Stochastic Calculus written by Ioannis Karatzas and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-27 with Mathematics categories.


This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large number of problems and exercises.



Brownian Motion Martingales And Stochastic Calculus


Brownian Motion Martingales And Stochastic Calculus
DOWNLOAD
Author : Jean-François Le Gall
language : en
Publisher: Springer
Release Date : 2016-04-28

Brownian Motion Martingales And Stochastic Calculus written by Jean-François Le Gall and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-28 with Mathematics categories.


This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.



Stochastic Calculus And Financial Applications


Stochastic Calculus And Financial Applications
DOWNLOAD
Author : J. Michael Steele
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Stochastic Calculus And Financial Applications written by J. Michael Steele and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This book is designed for students who want to develop professional skill in stochastic calculus and its application to problems in finance. The Wharton School course that forms the basis for this book is designed for energetic students who have had some experience with probability and statistics but have not had ad vanced courses in stochastic processes. Although the course assumes only a modest background, it moves quickly, and in the end, students can expect to have tools that are deep enough and rich enough to be relied on throughout their professional careers. The course begins with simple random walk and the analysis of gambling games. This material is used to motivate the theory of martingales, and, after reaching a decent level of confidence with discrete processes, the course takes up the more de manding development of continuous-time stochastic processes, especially Brownian motion. The construction of Brownian motion is given in detail, and enough mate rial on the subtle nature of Brownian paths is developed for the student to evolve a good sense of when intuition can be trusted and when it cannot. The course then takes up the Ito integral in earnest. The development of stochastic integration aims to be careful and complete without being pedantic.



Stochastic Differential Equations


Stochastic Differential Equations
DOWNLOAD
Author : Bernt Oksendal
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Stochastic Differential Equations written by Bernt Oksendal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and complete ness that is scares many nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of view: Not knowing anything (except rumours, maybe) about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields? I would not be so interested in the proof of the most general case, but rather in an easier proof of a special case, which may give just as much of the basic idea in the argument. And I would be willing to believe some basic results without proof (at first stage, anyway) in order to have time for some more basic applications.



Stochastic Processes And Applications


Stochastic Processes And Applications
DOWNLOAD
Author : Grigorios A. Pavliotis
language : en
Publisher: Springer
Release Date : 2014-11-19

Stochastic Processes And Applications written by Grigorios A. Pavliotis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-19 with Mathematics categories.


This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.