Stochastic Models In Biology

DOWNLOAD
Download Stochastic Models In Biology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Models In Biology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Stochastic Models In Biology
DOWNLOAD
Author : Narendra S. Goel
language : en
Publisher:
Release Date : 2003
Stochastic Models In Biology written by Narendra S. Goel and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.
This monograph, first published in 1974, is an attempt to demonstrate the usefulness of the theory of stochastic processes in understanding biologic phenomena at various levels of complexity - from the molecular to the ecologic level. The modeling of biologic systems via stochastic processes allows the incorporation of effects of secondary factors for which a detailed knowledge is missing. In the first two chapters of the monograph, the authors present the mathematic analysis used in the later chapters. The authors attempted to make the chapters self-contained and to make the book comprehensive, bringing in results derived by different authors using a variety of techniques and notations. In later chapters, where models of various biologic phenomena are discussed, introductory reviews of those phenomena are given for readers with less biologic background. Nira Dyn is a professor of Applied Mathematics at Tel-Aviv University in Israel since 1984. Her main field of activity now is Geometric Modeling. Her previous research interests were in Approximation Theory and in Mathematical Modeling of Biological systems. She is now serving in the editorial boards of the Journal of Approximation Theory and of the journal Computer Aided Geometric Design. She wrote more than 130 papers, and participated actively in more than 80 conferences and workshops. Her education was in Applied Mathematics in Israeli institutions; B.Sc from the Technion, Haifa, in 1965, M.Sc from the Weizmann Institute, Rehovot, in 1967, Ph.D. from the Weizmann Institute, Rehovot in 1970.
Stochastic Modelling For Systems Biology
DOWNLOAD
Author : Darren J. Wilkinson
language : en
Publisher: CRC Press
Release Date : 2006-04-18
Stochastic Modelling For Systems Biology written by Darren J. Wilkinson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-18 with Mathematics categories.
Although stochastic kinetic models are increasingly accepted as the best way to represent and simulate genetic and biochemical networks, most researchers in the field have limited knowledge of stochastic process theory. The stochastic processes formalism provides a beautiful, elegant, and coherent foundation for chemical kinetics and there is a wealth of associated theory every bit as powerful and elegant as that for conventional continuous deterministic models. The time is right for an introductory text written from this perspective. Stochastic Modelling for Systems Biology presents an accessible introduction to stochastic modelling using examples that are familiar to systems biology researchers. Focusing on computer simulation, the author examines the use of stochastic processes for modelling biological systems. He provides a comprehensive understanding of stochastic kinetic modelling of biological networks in the systems biology context. The text covers the latest simulation techniques and research material, such as parameter inference, and includes many examples and figures as well as software code in R for various applications. While emphasizing the necessary probabilistic and stochastic methods, the author takes a practical approach, rooting his theoretical development in discussions of the intended application. Written with self-study in mind, the book includes technical chapters that deal with the difficult problems of inference for stochastic kinetic models from experimental data. Providing enough background information to make the subject accessible to the non-specialist, the book integrates a fairly diverse literature into a single convenient and notationally consistent source.
Stochastic Modelling For Systems Biology Third Edition
DOWNLOAD
Author : Darren J. Wilkinson
language : en
Publisher: CRC Press
Release Date : 2018-12-07
Stochastic Modelling For Systems Biology Third Edition written by Darren J. Wilkinson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-07 with Mathematics categories.
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.
Stochastic Models In Biology
DOWNLOAD
Author : Narendra S. Goel
language : en
Publisher: Elsevier
Release Date : 2013-10-22
Stochastic Models In Biology written by Narendra S. Goel and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-22 with Science categories.
Stochastic Models in Biology describes the usefulness of the theory of stochastic process in studying biological phenomena. The book describes analysis of biological systems and experiments though probabilistic models rather than deterministic methods. The text reviews the mathematical analyses for modeling different biological systems such as the random processes continuous in time and discrete in state space. The book also discusses population growth and extinction through Malthus' law and the work of MacArthur and Wilson. The text then explains the dynamics of a population of interacting species. The book also addresses population genetics under systematic evolutionary pressures known as deterministic equations and genetic changes in a finite population known as stochastic equations. The text then turns to stochastic modeling of biological systems at the molecular level, particularly the kinetics of biochemical reactions. The book also presents various useful equations such as the differential equation for generating functions for birth and death processes. The text can prove valuable for biochemists, cellular biologists, and researchers in the medical and chemical field who are tasked to perform data analysis.
Stochastic Biomathematical Models
DOWNLOAD
Author : Mostafa Bachar
language : en
Publisher: Springer
Release Date : 2012-10-19
Stochastic Biomathematical Models written by Mostafa Bachar and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-19 with Mathematics categories.
Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.
Stochastic Processes In Cell Biology
DOWNLOAD
Author : Paul C. Bressloff
language : en
Publisher: Springer Nature
Release Date : 2022-01-04
Stochastic Processes In Cell Biology written by Paul C. Bressloff and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-04 with Mathematics categories.
This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.
Stochastic Dynamics In Computational Biology
DOWNLOAD
Author : Stefanie Winkelmann
language : en
Publisher: Springer Nature
Release Date : 2021-01-04
Stochastic Dynamics In Computational Biology written by Stefanie Winkelmann and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-04 with Mathematics categories.
The aim of this book is to provide a well-structured and coherent overview of existing mathematical modeling approaches for biochemical reaction systems, investigating relations between both the conventional models and several types of deterministic-stochastic hybrid model recombinations. Another main objective is to illustrate and compare diverse numerical simulation schemes and their computational effort. Unlike related works, this book presents a broad scope in its applications, from offering a detailed introduction to hybrid approaches for the case of multiple population scales to discussing the setting of time-scale separation resulting from widely varying firing rates of reaction channels. Additionally, it also addresses modeling approaches for non well-mixed reaction-diffusion dynamics, including deterministic and stochastic PDEs and spatiotemporal master equations. Finally, by translating and incorporating complex theory to a level accessible to non-mathematicians, this book effectively bridges the gap between mathematical research in computational biology and its practical use in biological, biochemical, and biomedical systems.
Methods And Models In Mathematical Biology
DOWNLOAD
Author : Johannes Müller
language : en
Publisher: Springer
Release Date : 2015-08-13
Methods And Models In Mathematical Biology written by Johannes Müller and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-13 with Mathematics categories.
This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.
Introduction To Stochastic Differential Equations With Applications To Modelling In Biology And Finance
DOWNLOAD
Author : Carlos A. Braumann
language : en
Publisher: John Wiley & Sons
Release Date : 2019-04-29
Introduction To Stochastic Differential Equations With Applications To Modelling In Biology And Finance written by Carlos A. Braumann and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-29 with Mathematics categories.
A comprehensive introduction to the core issues of stochastic differential equations and their effective application Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance offers a comprehensive examination to the most important issues of stochastic differential equations and their applications. The author — a noted expert in the field — includes myriad illustrative examples in modelling dynamical phenomena subject to randomness, mainly in biology, bioeconomics and finance, that clearly demonstrate the usefulness of stochastic differential equations in these and many other areas of science and technology. The text also features real-life situations with experimental data, thus covering topics such as Monte Carlo simulation and statistical issues of estimation, model choice and prediction. The book includes the basic theory of option pricing and its effective application using real-life. The important issue of which stochastic calculus, Itô or Stratonovich, should be used in applications is dealt with and the associated controversy resolved. Written to be accessible for both mathematically advanced readers and those with a basic understanding, the text offers a wealth of exercises and examples of application. This important volume: Contains a complete introduction to the basic issues of stochastic differential equations and their effective application Includes many examples in modelling, mainly from the biology and finance fields Shows how to: Translate the physical dynamical phenomenon to mathematical models and back, apply with real data, use the models to study different scenarios and understand the effect of human interventions Conveys the intuition behind the theoretical concepts Presents exercises that are designed to enhance understanding Offers a supporting website that features solutions to exercises and R code for algorithm implementation Written for use by graduate students, from the areas of application or from mathematics and statistics, as well as academics and professionals wishing to study or to apply these models, Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance is the authoritative guide to understanding the issues of stochastic differential equations and their application.
Stochastic Models Of Tumor Latency And Their Biostatistical Applications
DOWNLOAD
Author : Andrej Yu Yakovlev
language : en
Publisher: World Scientific
Release Date : 1996
Stochastic Models Of Tumor Latency And Their Biostatistical Applications written by Andrej Yu Yakovlev and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Medical categories.
This research monograph discusses newly developed mathematical models and methods that provide biologically meaningful inferences from data on cancer latency produced by follow-up and discrete surveillance studies. Methods for designing optimal strategies of cancer surveillance are systematically presented for the first time in this book. It offers new approaches to the stochastic description of tumor latency, employs biologically-based models for making statistical inference from data on tumor recurrence and also discusses methods of statistical analysis of data resulting from discrete surveillance strategies. It also offers insight into the role of prognostic factors based on the interpretation of their effects in terms of parameters endowed with biological meaning, as well as methods for designing optimal schedules of cancer screening and surveillance. Last but not least, it discusses survival models allowing for cure rates and the choice of optimal treatment based on covariate information, and presents numerous examples of real data analysis.