[PDF] Strength And Deformation Behaviour Of Cemented Paste Backfill In Sub Zero Environment - eBooks Review

Strength And Deformation Behaviour Of Cemented Paste Backfill In Sub Zero Environment


Strength And Deformation Behaviour Of Cemented Paste Backfill In Sub Zero Environment
DOWNLOAD

Download Strength And Deformation Behaviour Of Cemented Paste Backfill In Sub Zero Environment PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Strength And Deformation Behaviour Of Cemented Paste Backfill In Sub Zero Environment book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Strength And Deformation Behaviour Of Cemented Paste Backfill In Sub Zero Environment


Strength And Deformation Behaviour Of Cemented Paste Backfill In Sub Zero Environment
DOWNLOAD
Author : Shuang Chang
language : en
Publisher:
Release Date : 2016

Strength And Deformation Behaviour Of Cemented Paste Backfill In Sub Zero Environment written by Shuang Chang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.




Physics And Seismicity Of Rocks


Physics And Seismicity Of Rocks
DOWNLOAD
Author : Longjun Dong
language : en
Publisher: Frontiers Media SA
Release Date : 2021-11-30

Physics And Seismicity Of Rocks written by Longjun Dong and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-30 with Science categories.




Exploration Exploitation And Utilization Of Coal Measure Gas Into The Future Volume Ii


Exploration Exploitation And Utilization Of Coal Measure Gas Into The Future Volume Ii
DOWNLOAD
Author : Mingjun Zou
language : en
Publisher: Frontiers Media SA
Release Date : 2023-06-05

Exploration Exploitation And Utilization Of Coal Measure Gas Into The Future Volume Ii written by Mingjun Zou and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-05 with Science categories.




Treatment And Utilization Of Combustion And Incineration Residues


Treatment And Utilization Of Combustion And Incineration Residues
DOWNLOAD
Author : Lei Wang
language : en
Publisher: Elsevier
Release Date : 2024-05-25

Treatment And Utilization Of Combustion And Incineration Residues written by Lei Wang and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-25 with Science categories.


Treatment and Utilization of Combustion and Incineration Residues introduces state-of-art strategies for combustion and incineration solid residue management and utilization. The book also reviews current technologies for pollutant removal and control of combustion and incineration residues. Recycling ashes and slags in sustainable construction materials are also evaluated on environmental impacts and engineering values, and the use of different ashes and slags in cement clinker production is classified based on the sources and properties of the residues. In addition, the recovery of valuable metals and inorganic elements is also discussed. Finally, Treatment and Utilization of Combustion and Incineration Residues examines the latest understanding of reaction mechanisms of various treatment technologies is elaborated to foster the future design of treatment technologies and the actualization of sustainable management for combustion/incineration residues. - Provides systematical classification and introduction of combustion/incineration solid residues - Introduces the detoxification and purification technologies of hazardous combustion/incineration ashes and slags - Highlights the treatment and recycling approaches of combustion and incineration residues in cement clinker production and sustainable construction materials manufacture - Provides systematical classification and introduction of combustion/incineration solid residues - Introduces the detoxification and purification technologies of hazardous combustion/incineration ashes and slags - Highlights the treatment and recycling approaches of combustion and incineration residues in cement clinker production and sustainable construction materials manufacture



Dissertation Abstracts International


Dissertation Abstracts International
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2002

Dissertation Abstracts International written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Dissertations, Academic categories.




Cemented Paste Backfill


Cemented Paste Backfill
DOWNLOAD
Author : Yong Wang
language : en
Publisher: Elsevier
Release Date : 2024-05-19

Cemented Paste Backfill written by Yong Wang and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-19 with Science categories.


In view of the demand for the research on the transport resistance characteristics and mechanical properties of CPB under the influence of temperature effect, the book comprehensively describes the studies on rheological and mechanical properties of CPB materials used in underground metal mines. This book covers a wide range of topics, including a new definition of CPB, past participation and flow-induced corrosion of pipeline under the constant temperature condition, multiphysics processes in CPB and the associated consolidation process, the variation of rheological parameters and transport resistance, prediction model for rheological properties, mechanical behavior and properties of CPB and fiber-reinforced CPB, and control technology to reduce the adverse effect of temperature. Therefore, an academic framework for the transport resistance characteristics and mechanical properties under the temperature effect was established in this book. - Investigates rheological properties and multiphysics processes in CPB materials around the world - Looks into systematic studies on pipe transport and mechanical properties of CPB under temperature effects - Focuses mainly on the effect of temperature on paste transport and mechanical properties under the temperature effect, which provides a theoretical basis for safe and efficient filling operation and associated future research in this field - Offer in-depth insights into the evolution of the rheological and mechanical properties of CPB under the effect of temperatures



Testing And Multiphysics Modelling Of The Shear Behaviour Of Rock Cemented Paste Backfill Interface


Testing And Multiphysics Modelling Of The Shear Behaviour Of Rock Cemented Paste Backfill Interface
DOWNLOAD
Author : Kun Fang
language : en
Publisher:
Release Date : 2021

Testing And Multiphysics Modelling Of The Shear Behaviour Of Rock Cemented Paste Backfill Interface written by Kun Fang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


Cemented paste backfill (CPB) is an innovative technology developed in the mining industry during the last few decades. It has been adopted worldwide by many underground mines for its tremendous advantages: (1) mining space is stabilized by pumping cemented paste backfill into the underground cavities created by mining activity, which is critical to the safety of mine workers; (2) the consumption of tailings (which is stored at the ground surface and is a major source of acid mine drainage (AMD)) is beneficial for environmental protection and community safety; (3) due to the supporting effect of the CPB structure on underground cavities, the recovery ratio is significantly increased; and (4) CPB structures can also carry heavy equipment when mining the adjacent orebody, facilitating mining operations. How to design a safe and cost-effective CPB structure is a key task or challenge for mining engineers and researchers. Mechanical stability is one of the most important design criteria. This stability is mainly a function of the uniaxial compressive strength (UCS) of CPB body and the shear strength/behaviour of the CPB-rock interface. Given the lower friction angle and adhesion of the CPB-rock interface (in comparison with the friction angle and cohesion of CPB body), a thorough understanding of the shear strength/behaviour of the interface is critical for a cost-effective geotechnical design of underground CPB structures. However, only limited studies have been conducted to date on the shear performance of the CPB-rock interface, and no studies have taken into consideration the effects of different factors (e.g., temperature, sulphate ions, self-weight or surface morphology) on the shear behaviour of the CPB-rock interface. Moreover, no multiphysics interface model is currently available that incorporates the aforementioned factors to describe and predict the CPB-rock interface shear behaviour. This research gap was therefore addressed in this PhD study. In this PhD research, a series of laboratory tests were conducted assessing the effects of sulphate content, temperature, curing stress, drainage condition and interface roughness on the shear strength/behaviour of the interface between CPB and rock. The results obtained so far indicated that sulphate and temperature can either positively or negatively affect the shear strength of the CPB-rock interface, depending on the initial sulphate contents and curing time. In terms of the effect of temperature, the shear strength and shear strength properties generally increased with temperature. However, high temperature (≥ 35°C) resulted in an adverse effect on the shear strength because of the crossover effect. In addition, higher curing stress benefitted to the shear strength acquisition of the interface and, due to the increased effective stress and matrix suction, the drained condition increased shear strength as well. As for the effect of surface morphology, the shear strength of the CPB-rock interface rose with surface roughness. Furthermore, chemo-elastic as well as coupled thermo-chemo-mechanical cohesive zone models (CZMs), which take the sulphate attack and temperature-induced acceleration in the cement hydration into consideration, are also developed to simulate the shear strength and behaviour of the CPB-rock interface. The proposed models can well capture the shear behaviour of the interface under different loading conditions. Besides, they also numerically attest to the importance of the shear resistance of the CPB-rock interface in controlling stress distribution in CPB structures. The results obtained from experimental tests, numerical modelling and simulations concerning the shear behaviour of the CPB-rock interface under different multiphysics conditions provided useful information for understanding and more effectively assessing the shear strength and behaviour of the interface between a CPB structure and rock mass, which is critical for the design of safer and more cost-effective CPB structures.



Effects Of Dynamic Loading On The Geomechanical Behaviour Of Cemented Paste Backfill


Effects Of Dynamic Loading On The Geomechanical Behaviour Of Cemented Paste Backfill
DOWNLOAD
Author : Gonzalo Hernan Suazo Fuentealba
language : en
Publisher:
Release Date : 2016

Effects Of Dynamic Loading On The Geomechanical Behaviour Of Cemented Paste Backfill written by Gonzalo Hernan Suazo Fuentealba and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


[Truncated] Backfill is any material that is placed underground to fill the voids (stopes) left after the process of extracting minerals from crushed rock. Cemented Paste Backfill (CPB) is one of these materials, which consists of a mixture of full stream tailings, a small percentage of cement and water. Underground space is a dynamic environment that subjects these fills to a series of dynamic loading resulting from blasting and seismic events. Refracted stress waves at the CPB-rock interface can increase the shear and compressive stresses in the fill. As a result, excess pore water pressures may develop and liquefaction can eventually be triggered. Liquefaction might cause the failure of the retaining barricade constructed at the bottom of the stope since total pressure can rise to as high as the full hydrostatic head of the fill. However, the amount of dynamic energy transmitted to the fill as well as the liquefaction risk, greatly diminishes as the fill desaturates and negative water pressures arise in the pore space. In this context, the primarily objective of this thesis is to evaluate the liquefaction susceptibility of CPB at early curing ages due to seismic and blasting stress waves. In addition, the propagation phenomena of compressional waves in CPB, the effects of degree of saturation on stress wave refraction at CPB interfaces and the blast response of a backfilled stopes are explored. Finally, the evolution of unsaturated CPB properties and the mechanism of desaturation of the fill are investigated. This research consisted of in situ and experimental testing, and a numerical modelling component.Direct simple shear (DSS) tests were conducted to study the cyclic undrained shear response of CPB. The effects of confining stress, initial static shear stress and void ratio on the liquefaction resistance of uncemented fine-grained tailings was firstly researched. Then, the cyclic response of cemented tailings prepared at different curing ages, cement contents and initial void ratios, was examined. The material, independently of the degree of cementation, showed a predominantly cyclic mobility type response with large degradation of shear stiffness at advanced numbers of shear cycles. However, no flow type of failure was observed in any of the tests conducted. The overburden stress correction factor was found to decrease with increasing confining stresses in the range 100 to 400 kPa and to gradually increase from 400 kPa onwards, when samples were tested at the same initial void ratio. Similarly, higher cement contents, longer curing periods or higher initial solids contents were found to increase liquefaction resistance. A unconfined compressive strength (UCS) of about 70kPa, which corresponds to a shear wave velocity of 220 m/s, was found to be adequate to resist liquefaction under a large earthquake-induced cyclic stress ratio (CSR).



Temperature Dependency Of The Rheological Properties And Strength Of Cemented Paste Backfill That Contains Sodium Silicate


Temperature Dependency Of The Rheological Properties And Strength Of Cemented Paste Backfill That Contains Sodium Silicate
DOWNLOAD
Author : Ghada Abdulbaqi Ali
language : en
Publisher:
Release Date : 2021

Temperature Dependency Of The Rheological Properties And Strength Of Cemented Paste Backfill That Contains Sodium Silicate written by Ghada Abdulbaqi Ali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


Over the past decades, cemented paste backfill (CPB) has become a common, environmentally friendly method of managing mine wastes (such as tailings). This technology allows up to 60% of the total amount of tailings to be reused and filled in the mine stopes after converting them into cemented material. Beside reducing the environmental risks associated with the traditional disposal of these materials, turning them into cemented material and placing them in the underground mine stopes can also provide secondary support for these stopes in addition to minimizing the risk of ground subsidence in the mine area. CPB is an engineered mixture of tailings, water, and hydraulic binder (such as cement, blast furnace slag, and fly ash) that is mixed in the paste plant and delivered into the mine stopes through a gravity or pumping based transportation system. During the transportation of CPB through the delivery system pipelines, the flowability of CPB depends on the rheology of the transported CPB, which is affected by different factors, such as the transportation time, temperature variation, binder type, and chemical composition of these mixtures. In addition, the performance of CPB, after placing the CPB mixture into the mine stopes, is mainly dependent on the role of the hydraulic binder, as it increases the mechanical strength of the mixture through the process of cement hydration. The mechanical strength is also influenced by different factors, such as time progress, temperature variation, and presence of chemical additives. It has previously been found that fresh CPB transported and/or placed in the mine stopes can be susceptible to temperature variation of different sources, such as the climatic effects, heat generated from the surrounding rocks, and heat generated during the process of cement hydration. Unsuitable flowability of CPB through the delivery system might lead to significant financial losses due to clogging of pipelines with unexpected hardening of CPB during transportation, which will cause delay in work and possible damages to the pipelines. Also, failure of CPB structure in the mine stopes due to inappropriate mechanical strength may cause casualties to the mine workers as well as significant environmental and economic damages. Many researchers studied the rheological properties and/or strength development of CPB under the individual effect of any of the aforementioned factors. Additionally, many researchers have evaluated the coupled effect of some of these factors on the rheology and mechanical strength of CPB material. Hitherto, there are currently no studies that addressed the combined effect of all these conditions on the rheological properties and strength development of CPB. At the first stage of this M.A.Sc. study, a series of experimental tests was conducted on fresh CPB in order to determine the combined effect of time, temperature, binder content, and chemical additives on the rheological properties of CPB. These experiments include rheological properties test (yield stress and viscosity), microstructural analysis (thermal analysis and XRD), chemical analysis (pH and Zeta potential), and monitoring tests (electrical conductivity), which were conducted on 125 CPB samples that were mixed and prepared at different temperatures (2oC, 20oC, 35oC) and cured for different curing time (0 hrs., 0.25 hrs., 1 hr., 2hrs, and 4 hrs.). These samples were prepared with different blends of hydraulic binders (PCI, PCI/Slag, and PCI/FA) and contained different dosages of sodium silicate (0%, 0.1%, 0.3%, and 0.5%). The results obtained show that rheology of CPB increases with the progress of curing time. It also increases with the increase in the initial (mixing and curing) temperature and content of sodium silicate. It was also found that the partial usage of slag and FA reduces the rheological properties. However, CPBs containing PCI/FA as binder have lower rheological properties, and thus better flowability, than those that contain PCI/Slag as binder. At the second stage of this M.A.Sc. study, in order to understand the combined effect of time, temperature and sodium silicate content on the strength development of slag-CPB, unconfined compression (UCS) test, microstructural analysis (thermal analysis and MIP), and monitoring tests (electrical conductivity, suction, and volumetric water content) were conducted on 72 CPB samples that were prepared with PCI-Slag as a binder, cured for different times (1 day, 3 days, 7 days, and 28 days) under different curing temperatures of (2oC, 20oC, 35oC), and contained different dosages of sodium silicate (0%, 0.3% and 0.5%). The results obtained at this stage showed that the strength development of slag-CPB increases with the progress of curing time and temperature. It also increases with the increase in the sodium silicate content. Also, the combined effect of high temperature, high dosage of sodium silicate and longer curing time showed significant enhancement in the mechanical strength of slag-CPB. The findings of this M.A.Sc. research will contribute to cost effective, efficient, and safer design of CPB structures in the mine areas. It will also help in minimizing financial loss associated with unsuitable flowability of CPB transported in the CPB delivery system besides reducing the risks of human loss, and the environmental and economic damages associated with the failure of CPB structures.



Using Thermal Profiles Of Cemented Paste Backfill To Predict Strength


Using Thermal Profiles Of Cemented Paste Backfill To Predict Strength
DOWNLOAD
Author : Mahsa Mozaffaridana
language : en
Publisher:
Release Date : 2011

Using Thermal Profiles Of Cemented Paste Backfill To Predict Strength written by Mahsa Mozaffaridana and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.


Measurement of the strength development of Cemented Paste Backfill in laboratory cast cylinders does not replicate the in situ strengths of CPB in mine stopes. The mass of CPB in a filled stope is large and temperature rises due to the heat of hydration of the cementing materials, thus accelerating the gain in strength, relative to laboratory specimens stored at ambient temperature. The purpose of this study was to determine the impact on strength development when CPB test cylinders were subjected to a temperature profile mimicking that in a large mass, such as a mine stope. Also, maturity (the integral of time and temperature during hydration of the CPB) was compared to actual strengths, and the maturity -- strength concept used in concrete technology was applied. It was found that the strength- maturity relationship was applicable to CPB once the base line or datum temperature was adjusted.