String Net Construction Of Rcft Correlators

DOWNLOAD
Download String Net Construction Of Rcft Correlators PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get String Net Construction Of Rcft Correlators book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
String Net Construction Of Rcft Correlators
DOWNLOAD
Author : Jürgen Fuchs
language : en
Publisher: Springer Nature
Release Date : 2023-01-01
String Net Construction Of Rcft Correlators written by Jürgen Fuchs and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-01 with Science categories.
This book studies using string-net models to accomplish a direct, purely two-dimensional, approach to correlators of two-dimensional rational conformal field theories. The authors obtain concise geometric expressions for the objects describing bulk and boundary fields in terms of idempotents in the cylinder category of the underlying modular fusion category, comprising more general classes of fields than is standard in the literature. Combining these idempotents with Frobenius graphs on the world sheet yields string nets that form a consistent system of correlators, i.e. a system of invariants under appropriate mapping class groups that are compatible with factorization. The authors extract operator products of field objects from specific correlators; the resulting operator products are natural algebraic expressions that make sense beyond semisimplicity. They also derive an Eckmann-Hilton relation internal to a braided category, thereby demonstrating the utility of string nets for understanding algebra in braided tensor categories. Finally, they introduce the notion of a universal correlator. This systematizes the treatment of situations in which different world sheets have the same correlator and allows for the definition of a more comprehensive mapping class group.
Lie Theory And Its Applications In Physics
DOWNLOAD
Author : Vladimir Dobrev
language : en
Publisher: Springer Nature
Release Date : 2023-01-29
Lie Theory And Its Applications In Physics written by Vladimir Dobrev and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-29 with Mathematics categories.
This volume presents modern trends in the area of symmetries and their applications based on contributions to the Workshop "Lie Theory and Its Applications in Physics" held in Sofia, Bulgaria (on-line) in June 2021. Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrization and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators, special functions, and others. Furthermore, the necessary tools from functional analysis are included. This is a big interdisciplinary and interrelated field. The topics covered in this Volume are the most modern trends in the field of the Workshop: Representation Theory, Symmetries in String Theories, Symmetries in Gravity Theories, Supergravity, Conformal Field Theory, Integrable Systems, Quantum Computing and Deep Learning, Entanglement, Applications to Quantum Theory, Exceptional quantum algebra for the standard model of particle physics, Gauge Theories and Applications, Structures on Lie Groups and Lie Algebras. This book is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists, including researchers and graduate students interested in Lie Theory.
Mathematical Foundations Of Quantum Field Theory And Perturbative String Theory
DOWNLOAD
Author : Hisham Sati
language : en
Publisher: American Mathematical Soc.
Release Date : 2011-12-07
Mathematical Foundations Of Quantum Field Theory And Perturbative String Theory written by Hisham Sati and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-07 with Mathematics categories.
Conceptual progress in fundamental theoretical physics is linked with the search for the suitable mathematical structures that model the physical systems. Quantum field theory (QFT) has proven to be a rich source of ideas for mathematics for a long time. However, fundamental questions such as ``What is a QFT?'' did not have satisfactory mathematical answers, especially on spaces with arbitrary topology, fundamental for the formulation of perturbative string theory. This book contains a collection of papers highlighting the mathematical foundations of QFT and its relevance to perturbative string theory as well as the deep techniques that have been emerging in the last few years. The papers are organized under three main chapters: Foundations for Quantum Field Theory, Quantization of Field Theories, and Two-Dimensional Quantum Field Theories. An introduction, written by the editors, provides an overview of the main underlying themes that bind together the papers in the volume.
Xviith International Congress On Mathematical Physics
DOWNLOAD
Author : Arne Jensen
language : en
Publisher: World Scientific
Release Date : 2014
Xviith International Congress On Mathematical Physics written by Arne Jensen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Science categories.
This is an in-depth study of not just about Tan Kah-kee, but also the making of a legend through his deeds, self-sacrifices, fortitude and foresight. This revised edition sheds new light on his political agonies in Mao's China over campaigns against capitalists and intellectuals.
Tensor Categories
DOWNLOAD
Author : Pavel Etingof
language : en
Publisher: American Mathematical Soc.
Release Date : 2016-08-05
Tensor Categories written by Pavel Etingof and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-05 with Mathematics categories.
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Lectures On Tensor Categories And Modular Functors
DOWNLOAD
Author : Bojko Bakalov
language : en
Publisher: American Mathematical Soc.
Release Date : 2001
Lectures On Tensor Categories And Modular Functors written by Bojko Bakalov and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some proofs. The book makes an important addition to the existing literature on the topic. It would be suitable as a course text at the advanced-graduate level.
Homotopy Quantum Field Theory
DOWNLOAD
Author : Vladimir G. Turaev
language : en
Publisher: European Mathematical Society
Release Date : 2010
Homotopy Quantum Field Theory written by Vladimir G. Turaev and has been published by European Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.
Homotopy Quantum Field Theory (HQFT) is a branch of Topological Quantum Field Theory founded by E. Witten and M. Atiyah. It applies ideas from theoretical physics to study principal bundles over manifolds and, more generally, homotopy classes of maps from manifolds to a fixed target space. This book is the first systematic exposition of Homotopy Quantum Field Theory. It starts with a formal definition of an HQFT and provides examples of HQFTs in all dimensions. The main body of the text is focused on $2$-dimensional and $3$-dimensional HQFTs. A study of these HQFTs leads to new algebraic objects: crossed Frobenius group-algebras, crossed ribbon group-categories, and Hopf group-coalgebras. These notions and their connections with HQFTs are discussed in detail. The text ends with several appendices including an outline of recent developments and a list of open problems. Three appendices by M. Muger and A. Virelizier summarize their work in this area. The book is addressed to mathematicians, theoretical physicists, and graduate students interested in topological aspects of quantum field theory. The exposition is self-contained and well suited for a one-semester graduate course. Prerequisites include only basics of algebra and topology.
Dirichlet Branes And Mirror Symmetry
DOWNLOAD
Author :
language : en
Publisher: American Mathematical Soc.
Release Date :
Dirichlet Branes And Mirror Symmetry written by and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.
Vertex Algebras And Algebraic Curves
DOWNLOAD
Author : Edward Frenkel
language : en
Publisher: American Mathematical Soc.
Release Date : 2004-08-25
Vertex Algebras And Algebraic Curves written by Edward Frenkel and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-08-25 with Mathematics categories.
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.
Introduction To Conformal Field Theory
DOWNLOAD
Author : Ralph Blumenhagen
language : en
Publisher: Springer
Release Date : 2009-07-11
Introduction To Conformal Field Theory written by Ralph Blumenhagen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-11 with Science categories.
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields.