Structure Of Solutions Of Differential Equations

DOWNLOAD
Download Structure Of Solutions Of Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Structure Of Solutions Of Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Structure Of Solutions Of Differential Equations
DOWNLOAD
Author : Mitsuo Morimoto
language : en
Publisher: World Scientific
Release Date : 1996
Structure Of Solutions Of Differential Equations written by Mitsuo Morimoto and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Differential equations categories.
A collection of papers on current topics and future problems in the theory of differential equations which were reported at the Taniguchi symposium (Katata) and RIMS symposium (Kyoto); Painlevé transcendents, Borel resummation, linear differential equations of infinite order, solvability of microdifferential equations, Gevrey index, etc. are among them.
Discrete Variational Derivative Method
DOWNLOAD
Author : Daisuke Furihata
language : en
Publisher: CRC Press
Release Date : 2010-12-09
Discrete Variational Derivative Method written by Daisuke Furihata and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-12-09 with Mathematics categories.
Nonlinear Partial Differential Equations (PDEs) have become increasingly important in the description of physical phenomena. Unlike Ordinary Differential Equations, PDEs can be used to effectively model multidimensional systems. The methods put forward in Discrete Variational Derivative Method concentrate on a new class of "structure-preserving num
Geometric Numerical Integration
DOWNLOAD
Author : Ernst Hairer
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Geometric Numerical Integration written by Ernst Hairer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches.
Numerical Solutions Of Partial Differential Equations
DOWNLOAD
Author : Silvia Bertoluzza
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-10
Numerical Solutions Of Partial Differential Equations written by Silvia Bertoluzza and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-10 with Mathematics categories.
This book presents some of the latest developments in numerical analysis and scientific computing. Specifically, it covers central schemes, error estimates for discontinuous Galerkin methods, and the use of wavelets in scientific computing.
A Second Course In Elementary Differential Equations
DOWNLOAD
Author : Paul Waltman
language : en
Publisher: Elsevier
Release Date : 2014-05-10
A Second Course In Elementary Differential Equations written by Paul Waltman and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Mathematics categories.
A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.
Ordinary Differential Equations And Linear Algebra
DOWNLOAD
Author : Todd Kapitula
language : en
Publisher: SIAM
Release Date : 2015-11-17
Ordinary Differential Equations And Linear Algebra written by Todd Kapitula and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-17 with Mathematics categories.
Ordinary differential equations (ODEs) and linear algebra are foundational postcalculus mathematics courses in the sciences. The goal of this text is to help students master both subject areas in a one-semester course. Linear algebra is developed first, with an eye toward solving linear systems of ODEs. A computer algebra system is used for intermediate calculations (Gaussian elimination, complicated integrals, etc.); however, the text is not tailored toward a particular system. Ordinary Differential Equations and Linear Algebra: A Systems Approach systematically develops the linear algebra needed to solve systems of ODEs and includes over 15 distinct applications of the theory, many of which are not typically seen in a textbook at this level (e.g., lead poisoning, SIR models, digital filters). It emphasizes mathematical modeling and contains group projects at the end of each chapter that allow students to more fully explore the interaction between the modeling of a system, the solution of the model, and the resulting physical description.
Differential Equations For Engineers
DOWNLOAD
Author : Wei-Chau Xie
language : en
Publisher: Cambridge University Press
Release Date : 2010-04-26
Differential Equations For Engineers written by Wei-Chau Xie and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-26 with Technology & Engineering categories.
Xie presents a systematic introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. A step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. This book is suitable for undergraduate students in engineering.
Numerical Solution Of Boundary Value Problems For Ordinary Differential Equations
DOWNLOAD
Author : Uri M. Ascher
language : en
Publisher: SIAM
Release Date : 1988-01-01
Numerical Solution Of Boundary Value Problems For Ordinary Differential Equations written by Uri M. Ascher and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988-01-01 with Mathematics categories.
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
Petsc For Partial Differential Equations Numerical Solutions In C And Python
DOWNLOAD
Author : Ed Bueler
language : en
Publisher: SIAM
Release Date : 2020-10-22
Petsc For Partial Differential Equations Numerical Solutions In C And Python written by Ed Bueler and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-22 with Mathematics categories.
The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.
Computational Differential Equations
DOWNLOAD
Author : Kenneth Eriksson
language : en
Publisher: Cambridge University Press
Release Date : 1996-09-05
Computational Differential Equations written by Kenneth Eriksson and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-09-05 with Mathematics categories.
This textbook on computational mathematics is based on a fusion of mathematical analysis, numerical computation and applications.