Structure Preserving Algorithms For Oscillatory Differential Equations

DOWNLOAD
Download Structure Preserving Algorithms For Oscillatory Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Structure Preserving Algorithms For Oscillatory Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Structure Preserving Algorithms For Oscillatory Differential Equations
DOWNLOAD
Author : Xinyuan Wu
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-02-02
Structure Preserving Algorithms For Oscillatory Differential Equations written by Xinyuan Wu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-02-02 with Technology & Engineering categories.
Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations. The work is intended for scientists, engineers, teachers and students who are interested in structure-preserving algorithms for differential equations. Xinyuan Wu is a professor at Nanjing University; Xiong You is an associate professor at Nanjing Agricultural University; Bin Wang is a joint Ph.D student of Nanjing University and University of Cambridge.
Structure Preserving Algorithms For Oscillatory Differential Equations
DOWNLOAD
Author : Xinyuan Wu
language : en
Publisher:
Release Date : 2015
Structure Preserving Algorithms For Oscillatory Differential Equations written by Xinyuan Wu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Differential equations, Nonlinear categories.
Structure Preserving Algorithms For Oscillatory Differential Equations Ii
DOWNLOAD
Author : Xinyuan Wu
language : en
Publisher: Springer
Release Date : 2016-03-03
Structure Preserving Algorithms For Oscillatory Differential Equations Ii written by Xinyuan Wu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-03 with Technology & Engineering categories.
This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods. The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods. This book is intended for engineers and scientists investigating oscillatory systems, as well as for teachers and students who are interested in structure-preserving algorithms for differential equations.
Structure Preserving Algorithms For Oscillatory Differential Equations
DOWNLOAD
Author : Xinyuan Wu
language : en
Publisher:
Release Date : 2013
Structure Preserving Algorithms For Oscillatory Differential Equations written by Xinyuan Wu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Differential equations, Nonlinear categories.
Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations.
Recent Developments In Structure Preserving Algorithms For Oscillatory Differential Equations
DOWNLOAD
Author : Xinyuan Wu
language : en
Publisher: Springer
Release Date : 2018-04-19
Recent Developments In Structure Preserving Algorithms For Oscillatory Differential Equations written by Xinyuan Wu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-19 with Mathematics categories.
The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addresses challenging problems at the forefront of modern numerical analysis and presents a wide range of modern tools and techniques.
Geometric Numerical Integration
DOWNLOAD
Author : Ernst Hairer
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Geometric Numerical Integration written by Ernst Hairer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches.
Geometric Integrators For Differential Equations With Highly Oscillatory Solutions
DOWNLOAD
Author : Xinyuan Wu
language : en
Publisher: Springer Nature
Release Date : 2021-09-28
Geometric Integrators For Differential Equations With Highly Oscillatory Solutions written by Xinyuan Wu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-28 with Mathematics categories.
The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations. Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions. This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions.
4th International Conference On Artificial Intelligence And Applied Mathematics In Engineering
DOWNLOAD
Author : D. Jude Hemanth
language : en
Publisher: Springer Nature
Release Date : 2023-07-02
4th International Conference On Artificial Intelligence And Applied Mathematics In Engineering written by D. Jude Hemanth and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-02 with Technology & Engineering categories.
As general, this book is a collection of the most recent, quality research papers regarding applications of Artificial Intelligence and Applied Mathematics for engineering problems. The papers included in the book were accepted and presented in the 4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME 2022), which was held in Baku, Azerbaijan (Azerbaijan Technical University) between May 20 and 22, 2022. Objective of the book content is to inform the international audience about the cutting-edge, effective developments and improvements in different engineering fields. As a collection of the ICAIAME 2022 event, the book gives consideration for the results by especially intelligent system formations and the associated applications. The target audience of the book is international researchers, degree students, practitioners from industry, and experts from different engineering disciplines.
Numerical Approximation Of Ordinary Differential Problems
DOWNLOAD
Author : Raffaele D'Ambrosio
language : en
Publisher: Springer Nature
Release Date : 2023-09-26
Numerical Approximation Of Ordinary Differential Problems written by Raffaele D'Ambrosio and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-26 with Mathematics categories.
This book is focused on the numerical discretization of ordinary differential equations (ODEs), under several perspectives. The attention is first conveyed to providing accurate numerical solutions of deterministic problems. Then, the presentation moves to a more modern vision of numerical approximation, oriented to reproducing qualitative properties of the continuous problem along the discretized dynamics over long times. The book finally performs some steps in the direction of stochastic differential equations (SDEs), with the intention of offering useful tools to generalize the techniques introduced for the numerical approximation of ODEs to the stochastic case, as well as of presenting numerical issues natively introduced for SDEs. The book is the result of an intense teaching experience as well as of the research carried out in the last decade by the author. It is both intended for students and instructors: for the students, this book is comprehensive and rather self-contained; for the instructors, there is material for one or more monographic courses on ODEs and related topics. In this respect, the book can be followed in its designed path and includes motivational aspects, historical background, examples and a software programs, implemented in Matlab, that can be useful for the laboratory part of a course on numerical ODEs/SDEs. The book also contains the portraits of several pioneers in the numerical discretization of differential problems, useful to provide a framework to understand their contributes in the presented fields. Last, but not least, rigor joins readability in the book.
Proceedings Of The International Congress Of Mathematicians 2018 Icm 2018 In 4 Volumes
DOWNLOAD
Author : Boyan Sirakov
language : en
Publisher: World Scientific
Release Date : 2019-02-27
Proceedings Of The International Congress Of Mathematicians 2018 Icm 2018 In 4 Volumes written by Boyan Sirakov and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-27 with Mathematics categories.
The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.