Survival Models And Data Analysis

DOWNLOAD
Download Survival Models And Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Survival Models And Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Survival Models And Data Analysis
DOWNLOAD
Author : Regina C. Elandt-Johnson
language : en
Publisher: John Wiley & Sons
Release Date : 2014-11-05
Survival Models And Data Analysis written by Regina C. Elandt-Johnson and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-05 with Mathematics categories.
Survival analysis deals with the distribution of life times, essentially the times from an initiating event such as birth or the start of a job to some terminal event such as death or pension. This book, originally published in 1980, surveys and analyzes methods that use survival measurements and concepts, and helps readers apply the appropriate method for a given situation. Four broad sections cover introductions to data, univariate survival function, multiple-failure data, and advanced topics.
Survival Analysis
DOWNLOAD
Author : Xian Liu
language : en
Publisher: John Wiley & Sons
Release Date : 2012-06-13
Survival Analysis written by Xian Liu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-13 with Mathematics categories.
Survival analysis concerns sequential occurrences of events governed by probabilistic laws. Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis. Assumes only a minimal knowledge of SAS whilst enabling more experienced users to learn new techniques of data input and manipulation. Provides numerous examples of SAS code to illustrate each of the methods, along with step-by-step instructions to perform each technique. Highlights the strengths and limitations of each technique covered. Covering a wide scope of survival techniques and methods, from the introductory to the advanced, this book can be used as a useful reference book for planners, researchers, and professors who are working in settings involving various lifetime events. Scientists interested in survival analysis should find it a useful guidebook for the incorporation of survival data and methods into their projects.
Modeling Survival Data Extending The Cox Model
DOWNLOAD
Author : Terry M. Therneau
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Modeling Survival Data Extending The Cox Model written by Terry M. Therneau and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
Extending the Cox Model is aimed at researchers, practitioners, and graduate students who have some exposure to traditional methods of survival analysis. The emphasis is on semiparametric methods based on the proportional hazards model. The inclusion of examples with SAS and S-PLUS code will make the book accessible to most working statisticians.
Lifetime Data Models In Reliability And Survival Analysis
DOWNLOAD
Author : Nicholas P. Jewell
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Lifetime Data Models In Reliability And Survival Analysis written by Nicholas P. Jewell and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
Statistical models and methods for lifetime and other time-to-event data are widely used in many fields, including medicine, the environmental sciences, actuarial science, engineering, economics, management, and the social sciences. For example, closely related statistical methods have been applied to the study of the incubation period of diseases such as AIDS, the remission time of cancers, life tables, the time-to-failure of engineering systems, employment duration, and the length of marriages. This volume contains a selection of papers based on the 1994 International Research Conference on Lifetime Data Models in Reliability and Survival Analysis, held at Harvard University. The conference brought together a varied group of researchers and practitioners to advance and promote statistical science in the many fields that deal with lifetime and other time-to-event-data. The volume illustrates the depth and diversity of the field. A few of the authors have published their conference presentations in the new journal Lifetime Data Analysis (Kluwer Academic Publishers).
Advanced Survival Models
DOWNLOAD
Author : Catherine Legrand
language : en
Publisher: CRC Press
Release Date : 2021-03-22
Advanced Survival Models written by Catherine Legrand and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-22 with Mathematics categories.
Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome. Features Presents state-of-the art approaches for different advanced survival models including frailty models, cure models, competing risk models and joint models for a longitudinal and a survival outcome Uses consistent notation throughout the book for the different techniques presented Explains in which situation each of these models should be used, and how they are linked to specific research questions Focuses on the understanding of the models, their implementation, and their interpretation, with an appropriate level of methodological development for masters students and applied statisticians Provides references to existing R packages and SAS procedure or macros, and illustrates the use of the main ones on real datasets This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.
Statistical Methods For Survival Data Analysis
DOWNLOAD
Author : Elisa T. Lee
language : en
Publisher:
Release Date : 1980
Statistical Methods For Survival Data Analysis written by Elisa T. Lee and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1980 with Medical categories.
Third Edition brings the text up to date with new material and updated references. New content includes an introduction to left and interval censored data; the log-logistic distribution; estimation procedures for left and interval censored data; parametric methods iwth covariates; Cox's proportional hazards model (including stratification and time-dependent covariates); and multiple responses to the logistic regression model. Coverage of graphical methods has been deleted. Large data sets are provided on an FTP site for readers' convenience. Bibliographic remarks conclude each chapter.
Bayesian Survival Analysis
DOWNLOAD
Author : Joseph G. Ibrahim
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Bayesian Survival Analysis written by Joseph G. Ibrahim and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Medical categories.
Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. Several topics are addressed, including parametric models, semiparametric models based on prior processes, proportional and non-proportional hazards models, frailty models, cure rate models, model selection and comparison, joint models for longitudinal and survival data, models with time varying covariates, missing covariate data, design and monitoring of clinical trials, accelerated failure time models, models for mulitivariate survival data, and special types of hierarchial survival models. Also various censoring schemes are examined including right and interval censored data. Several additional topics are discussed, including noninformative and informative prior specificiations, computing posterior qualities of interest, Bayesian hypothesis testing, variable selection, model selection with nonnested models, model checking techniques using Bayesian diagnostic methods, and Markov chain Monte Carlo (MCMC) algorithms for sampling from the posteiror and predictive distributions. The book presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all essentially from the health sciences, including cancer, AIDS, and the environment. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. This book would be most suitable for second or third year graduate students in statistics or biostatistics. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.
Handbook Of Regression Modeling In People Analytics
DOWNLOAD
Author : Keith McNulty
language : en
Publisher: CRC Press
Release Date : 2021-07-30
Handbook Of Regression Modeling In People Analytics written by Keith McNulty and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-30 with Business & Economics categories.
Despite the recent rapid growth in machine learning and predictive analytics, many of the statistical questions that are faced by researchers and practitioners still involve explaining why something is happening. Regression analysis is the best ‘swiss army knife’ we have for answering these kinds of questions. This book is a learning resource on inferential statistics and regression analysis. It teaches how to do a wide range of statistical analyses in both R and in Python, ranging from simple hypothesis testing to advanced multivariate modelling. Although it is primarily focused on examples related to the analysis of people and talent, the methods easily transfer to any discipline. The book hits a ‘sweet spot’ where there is just enough mathematical theory to support a strong understanding of the methods, but with a step-by-step guide and easily reproducible examples and code, so that the methods can be put into practice immediately. This makes the book accessible to a wide readership, from public and private sector analysts and practitioners to students and researchers. Key Features: • 16 accompanying datasets across a wide range of contexts (e.g. academic, corporate, sports, marketing) • Clear step-by-step instructions on executing the analyses. • Clear guidance on how to interpret results. • Primary instruction in R but added sections for Python coders. • Discussion exercises and data exercises for each of the main chapters. • Final chapter of practice material and datasets ideal for class homework or project work.
Applied Survival Analysis
DOWNLOAD
Author : David W. Hosmer, Jr.
language : en
Publisher: John Wiley & Sons
Release Date : 2008-03-07
Applied Survival Analysis written by David W. Hosmer, Jr. and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-03-07 with Mathematics categories.
THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.