Synthetic Data For Deep Learning

DOWNLOAD
Download Synthetic Data For Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Synthetic Data For Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Synthetic Data For Deep Learning
DOWNLOAD
Author : Sergey I. Nikolenko
language : en
Publisher: Springer Nature
Release Date : 2021-06-26
Synthetic Data For Deep Learning written by Sergey I. Nikolenko and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-26 with Computers categories.
This is the first book on synthetic data for deep learning, and its breadth of coverage may render this book as the default reference on synthetic data for years to come. The book can also serve as an introduction to several other important subfields of machine learning that are seldom touched upon in other books. Machine learning as a discipline would not be possible without the inner workings of optimization at hand. The book includes the necessary sinews of optimization though the crux of the discussion centers on the increasingly popular tool for training deep learning models, namely synthetic data. It is expected that the field of synthetic data will undergo exponential growth in the near future. This book serves as a comprehensive survey of the field. In the simplest case, synthetic data refers to computer-generated graphics used to train computer vision models. There are many more facets of synthetic data to consider. In the section on basic computer vision, the book discusses fundamental computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., object detection and semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, and simulation environments for robotics. Additionally, it touches upon applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more). It also surveys the work on improving synthetic data development and alternative ways to produce it such as GANs. The book introduces and reviews several different approaches to synthetic data in various domains of machine learning, most notably the following fields: domain adaptation for making synthetic data more realistic and/or adapting the models to be trained on synthetic data and differential privacy for generating synthetic data with privacy guarantees. This discussion is accompanied by an introduction into generative adversarial networks (GAN) and an introduction to differential privacy.
Synthetic Data For Deep Learning
DOWNLOAD
Author : Necmi Gürsakal
language : en
Publisher: Apress
Release Date : 2022-11-16
Synthetic Data For Deep Learning written by Necmi Gürsakal and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-16 with Computers categories.
Data is the indispensable fuel that drives the decision making of everything from governments, to major corporations, to sports teams. Its value is almost beyond measure. But what if that data is either unavailable or problematic to access? That’s where synthetic data comes in. This book will show you how to generate synthetic data and use it to maximum effect. Synthetic Data for Deep Learning begins by tracing the need for and development of synthetic data before delving into the role it plays in machine learning and computer vision. You’ll gain insight into how synthetic data can be used to study the benefits of autonomous driving systems and to make accurate predictions about real-world data. You’ll work through practical examples of synthetic data generation using Python and R, placing its purpose and methods in a real-world context. Generative Adversarial Networks (GANs) are also covered in detail, explaining how they work and their potential applications. After completing this book, you’ll have the knowledge necessary to generate and use synthetic data to enhance your corporate, scientific, or governmental decision making. What You Will Learn Create synthetic tabular data with R and Python Understand how synthetic data is important for artificial neural networks Master the benefits and challenges of synthetic data Understand concepts such as domain randomization and domain adaptation related to synthetic data generation Who This Book Is For Those who want to learn about synthetic data and its applications, especially professionals working in the field of machine learning and computer vision. This book will also be useful for graduate and doctoral students interested in this subject.
Synthetic Data For Machine Learning
DOWNLOAD
Author : Abdulrahman Kerim
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-10-27
Synthetic Data For Machine Learning written by Abdulrahman Kerim and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-27 with Computers categories.
Conquer data hurdles, supercharge your ML journey, and become a leader in your field with synthetic data generation techniques, best practices, and case studies Key Features Avoid common data issues by identifying and solving them using synthetic data-based solutions Master synthetic data generation approaches to prepare for the future of machine learning Enhance performance, reduce budget, and stand out from competitors using synthetic data Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe machine learning (ML) revolution has made our world unimaginable without its products and services. However, training ML models requires vast datasets, which entails a process plagued by high costs, errors, and privacy concerns associated with collecting and annotating real data. Synthetic data emerges as a promising solution to all these challenges. This book is designed to bridge theory and practice of using synthetic data, offering invaluable support for your ML journey. Synthetic Data for Machine Learning empowers you to tackle real data issues, enhance your ML models' performance, and gain a deep understanding of synthetic data generation. You’ll explore the strengths and weaknesses of various approaches, gaining practical knowledge with hands-on examples of modern methods, including Generative Adversarial Networks (GANs) and diffusion models. Additionally, you’ll uncover the secrets and best practices to harness the full potential of synthetic data. By the end of this book, you’ll have mastered synthetic data and positioned yourself as a market leader, ready for more advanced, cost-effective, and higher-quality data sources, setting you ahead of your peers in the next generation of ML.What you will learn Understand real data problems, limitations, drawbacks, and pitfalls Harness the potential of synthetic data for data-hungry ML models Discover state-of-the-art synthetic data generation approaches and solutions Uncover synthetic data potential by working on diverse case studies Understand synthetic data challenges and emerging research topics Apply synthetic data to your ML projects successfully Who this book is forIf you are a machine learning (ML) practitioner or researcher who wants to overcome data problems, this book is for you. Basic knowledge of ML and Python programming is required. The book is one of the pioneer works on the subject, providing leading-edge support for ML engineers, researchers, companies, and decision makers.
Synthetic Data Generation
DOWNLOAD
Author : Robert Johnson
language : en
Publisher: HiTeX Press
Release Date : 2024-10-27
Synthetic Data Generation written by Robert Johnson and has been published by HiTeX Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-27 with Computers categories.
"Synthetic Data Generation: A Beginner’s Guide" offers an insightful exploration into the emerging field of synthetic data, essential for anyone navigating the complexities of data science, artificial intelligence, and technology innovation. This comprehensive guide demystifies synthetic data, presenting a detailed examination of its core principles, techniques, and prospective applications across diverse industries. Designed with accessibility in mind, it equips beginners and seasoned practitioners alike with the necessary knowledge to leverage synthetic data's potential effectively. Delving into the nuances of data sources, generation techniques, and evaluation metrics, this book serves as a practical roadmap for mastering synthetic data. Readers will gain a robust understanding of the advantages and limitations, ethical considerations, and privacy concerns associated with synthetic data usage. Through real-world examples and industry insights, the guide illuminates the transformative role of synthetic data in enhancing innovation while safeguarding privacy. With an eye on both present applications and future trends, "Synthetic Data Generation: A Beginner’s Guide" prepares readers to engage with the evolving challenges and opportunities in data-centric fields. Whether for academic enrichment, professional development, or as a primer for new data enthusiasts, this book stands as an essential resource in understanding and implementing synthetic data solutions.
Practical Synthetic Data Generation
DOWNLOAD
Author : Khaled El Emam
language : en
Publisher: O'Reilly Media
Release Date : 2020-05-19
Practical Synthetic Data Generation written by Khaled El Emam and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-19 with Computers categories.
Building and testing machine learning models requires access to large and diverse data. But where can you find usable datasets without running into privacy issues? This practical book introduces techniques for generating synthetic data—fake data generated from real data—so you can perform secondary analysis to do research, understand customer behaviors, develop new products, or generate new revenue. Data scientists will learn how synthetic data generation provides a way to make such data broadly available for secondary purposes while addressing many privacy concerns. Analysts will learn the principles and steps for generating synthetic data from real datasets. And business leaders will see how synthetic data can help accelerate time to a product or solution. This book describes: Steps for generating synthetic data using multivariate normal distributions Methods for distribution fitting covering different goodness-of-fit metrics How to replicate the simple structure of original data An approach for modeling data structure to consider complex relationships Multiple approaches and metrics you can use to assess data utility How analysis performed on real data can be replicated with synthetic data Privacy implications of synthetic data and methods to assess identity disclosure
Deep Learning Theory And Applications
DOWNLOAD
Author : Ana Fred
language : en
Publisher: Springer Nature
Release Date : 2024-08-20
Deep Learning Theory And Applications written by Ana Fred and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-20 with Computers categories.
The two-volume set CCIS 2171 and 2172 constitutes the refereed best papers from the 5th International Conference on Deep Learning Theory and Applications, DeLTA 2024, which took place in Dijon, France, during July 10-11, 2024. The 44 papers included in these proceedings were carefully reviewed and selected from a total of 70 submissions. They focus on topics such as deep learning and big data analytics; machine-learning and artificial intelligence, etc.
Practical Synthetic Data Generation
DOWNLOAD
Author : Khaled El Emam
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-05-19
Practical Synthetic Data Generation written by Khaled El Emam and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-19 with Computers categories.
Building and testing machine learning models requires access to large and diverse data. But where can you find usable datasets without running into privacy issues? This practical book introduces techniques for generating synthetic data—fake data generated from real data—so you can perform secondary analysis to do research, understand customer behaviors, develop new products, or generate new revenue. Data scientists will learn how synthetic data generation provides a way to make such data broadly available for secondary purposes while addressing many privacy concerns. Analysts will learn the principles and steps for generating synthetic data from real datasets. And business leaders will see how synthetic data can help accelerate time to a product or solution. This book describes: Steps for generating synthetic data using multivariate normal distributions Methods for distribution fitting covering different goodness-of-fit metrics How to replicate the simple structure of original data An approach for modeling data structure to consider complex relationships Multiple approaches and metrics you can use to assess data utility How analysis performed on real data can be replicated with synthetic data Privacy implications of synthetic data and methods to assess identity disclosure
Ai Machine Learning And Deep Learning
DOWNLOAD
Author : Fei Hu
language : en
Publisher: CRC Press
Release Date : 2023-06-05
Ai Machine Learning And Deep Learning written by Fei Hu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-05 with Computers categories.
Today, Artificial Intelligence (AI) and Machine Learning/ Deep Learning (ML/DL) have become the hottest areas in information technology. In our society, many intelligent devices rely on AI/ML/DL algorithms/tools for smart operations. Although AI/ML/DL algorithms and tools have been used in many internet applications and electronic devices, they are also vulnerable to various attacks and threats. AI parameters may be distorted by the internal attacker; the DL input samples may be polluted by adversaries; the ML model may be misled by changing the classification boundary, among many other attacks and threats. Such attacks can make AI products dangerous to use. While this discussion focuses on security issues in AI/ML/DL-based systems (i.e., securing the intelligent systems themselves), AI/ML/DL models and algorithms can actually also be used for cyber security (i.e., the use of AI to achieve security). Since AI/ML/DL security is a newly emergent field, many researchers and industry professionals cannot yet obtain a detailed, comprehensive understanding of this area. This book aims to provide a complete picture of the challenges and solutions to related security issues in various applications. It explains how different attacks can occur in advanced AI tools and the challenges of overcoming those attacks. Then, the book describes many sets of promising solutions to achieve AI security and privacy. The features of this book have seven aspects: This is the first book to explain various practical attacks and countermeasures to AI systems Both quantitative math models and practical security implementations are provided It covers both "securing the AI system itself" and "using AI to achieve security" It covers all the advanced AI attacks and threats with detailed attack models It provides multiple solution spaces to the security and privacy issues in AI tools The differences among ML and DL security and privacy issues are explained Many practical security applications are covered
Advances In Neural Computation Machine Learning And Cognitive Research Iv
DOWNLOAD
Author : Boris Kryzhanovsky
language : en
Publisher: Springer Nature
Release Date : 2020-10-01
Advances In Neural Computation Machine Learning And Cognitive Research Iv written by Boris Kryzhanovsky and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-01 with Technology & Engineering categories.
This book describes new theories and applications of artificial neural networks, with a special focus on answering questions in neuroscience, biology and biophysics and cognitive research. It covers a wide range of methods and technologies, including deep neural networks, large scale neural models, brain computer interface, signal processing methods, as well as models of perception, studies on emotion recognition, self-organization and many more. The book includes both selected and invited papers presented at the XXII International Conference on Neuroinformatics, held on October 12-16, 2020, Moscow, Russia.
Deep Learning With Tensorflow 2 And Keras
DOWNLOAD
Author : Antonio Gulli
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-27
Deep Learning With Tensorflow 2 And Keras written by Antonio Gulli and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-27 with Computers categories.
Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices Key FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook Description Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML. What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is for This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.