[PDF] Teaching Learning Based Optimization Algorithm - eBooks Review

Teaching Learning Based Optimization Algorithm


Teaching Learning Based Optimization Algorithm
DOWNLOAD

Download Teaching Learning Based Optimization Algorithm PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Teaching Learning Based Optimization Algorithm book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Teaching Learning Based Optimization Algorithm


Teaching Learning Based Optimization Algorithm
DOWNLOAD
Author : R. Venkata Rao
language : en
Publisher: Springer
Release Date : 2015-11-14

Teaching Learning Based Optimization Algorithm written by R. Venkata Rao and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-14 with Technology & Engineering categories.


Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.



Advanced Optimization By Nature Inspired Algorithms


Advanced Optimization By Nature Inspired Algorithms
DOWNLOAD
Author : Omid Bozorg-Haddad
language : en
Publisher: Springer
Release Date : 2017-06-30

Advanced Optimization By Nature Inspired Algorithms written by Omid Bozorg-Haddad and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-30 with Technology & Engineering categories.


This book, compiles, presents, and explains the most important meta-heuristic and evolutionary optimization algorithms whose successful performance has been proven in different fields of engineering, and it includes application of these algorithms to important engineering optimization problems. In addition, this book guides readers to studies that have implemented these algorithms by providing a literature review on developments and applications of each algorithm. This book is intended for students, but can be used by researchers and professionals in the area of engineering optimization.



Evolutionary Optimization Algorithms


Evolutionary Optimization Algorithms
DOWNLOAD
Author : Altaf Q. H. Badar
language : en
Publisher: CRC Press
Release Date : 2021-10-30

Evolutionary Optimization Algorithms written by Altaf Q. H. Badar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-30 with Technology & Engineering categories.


This comprehensive reference text discusses evolutionary optimization techniques, to find optimal solutions for single and multi-objective problems. The text presents each evolutionary optimization algorithm along with its history and other working equations. It also discusses variants and hybrids of optimization techniques. The text presents step-by-step solution to a problem and includes software’s like MATLAB and Python for solving optimization problems. It covers important optimization algorithms including single objective optimization, multi objective optimization, Heuristic optimization techniques, shuffled frog leaping algorithm, bacteria foraging algorithm and firefly algorithm. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, mechanical engineering, and computer science and engineering, this text: Provides step-by-step solution for each evolutionary optimization algorithm. Provides flowcharts and graphics for better understanding of optimization techniques. Discusses popular optimization techniques include particle swarm optimization and genetic algorithm. Presents every optimization technique along with the history and working equations. Includes latest software like Python and MATLAB.



Evolutionary Optimization Algorithms


Evolutionary Optimization Algorithms
DOWNLOAD
Author : Dan Simon
language : en
Publisher: John Wiley & Sons
Release Date : 2013-06-13

Evolutionary Optimization Algorithms written by Dan Simon and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-13 with Mathematics categories.


A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.



Nature Inspired Optimization For Electrical Power System


Nature Inspired Optimization For Electrical Power System
DOWNLOAD
Author : Manjaree Pandit
language : en
Publisher: Springer Nature
Release Date : 2020-04-07

Nature Inspired Optimization For Electrical Power System written by Manjaree Pandit and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-07 with Technology & Engineering categories.


This book presents a wide range of optimization methods and their applications to various electrical power system problems such as economical load dispatch, demand supply management in microgrids, levelized energy pricing, load frequency control and congestion management, and reactive power management in radial distribution systems. Problems related to electrical power systems are often highly complex due to the massive dimensions, nonlinearity, non-convexity and discontinuity associated with objective functions. These systems also have a large number of equality and inequality constraints, which give rise to optimization problems that are difficult to solve using classical numerical methods. In this regard, nature inspired optimization algorithms offer an effective alternative, due to their ease of use, population-based parallel search mechanism, non-dependence on the nature of the problem, and ability to accommodate non-differentiable, non-convex problems. The analytical model of nature inspired techniques mimics the natural behaviors and intelligence of life forms. These techniques are mainly based on evolution, swarm intelligence, ecology, human intelligence and physical science.



Algorithms For Optimization


Algorithms For Optimization
DOWNLOAD
Author : Mykel J. Kochenderfer
language : en
Publisher: MIT Press
Release Date : 2019-03-12

Algorithms For Optimization written by Mykel J. Kochenderfer and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-12 with Computers categories.


A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.



Nature Inspired Optimization Algorithms


Nature Inspired Optimization Algorithms
DOWNLOAD
Author : Xin-She Yang
language : en
Publisher: Elsevier
Release Date : 2014-02-17

Nature Inspired Optimization Algorithms written by Xin-She Yang and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-17 with Computers categories.


Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm



Engineering Optimization


Engineering Optimization
DOWNLOAD
Author : S. S. Rao
language : en
Publisher: New Age International
Release Date : 2000

Engineering Optimization written by S. S. Rao and has been published by New Age International this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Engineering categories.


A Rigorous Mathematical Approach To Identifying A Set Of Design Alternatives And Selecting The Best Candidate From Within That Set, Engineering Optimization Was Developed As A Means Of Helping Engineers To Design Systems That Are Both More Efficient And Less Expensive And To Develop New Ways Of Improving The Performance Of Existing Systems.Thanks To The Breathtaking Growth In Computer Technology That Has Occurred Over The Past Decade, Optimization Techniques Can Now Be Used To Find Creative Solutions To Larger, More Complex Problems Than Ever Before. As A Consequence, Optimization Is Now Viewed As An Indispensable Tool Of The Trade For Engineers Working In Many Different Industries, Especially The Aerospace, Automotive, Chemical, Electrical, And Manufacturing Industries.In Engineering Optimization, Professor Singiresu S. Rao Provides An Application-Oriented Presentation Of The Full Array Of Classical And Newly Developed Optimization Techniques Now Being Used By Engineers In A Wide Range Of Industries. Essential Proofs And Explanations Of The Various Techniques Are Given In A Straightforward, User-Friendly Manner, And Each Method Is Copiously Illustrated With Real-World Examples That Demonstrate How To Maximize Desired Benefits While Minimizing Negative Aspects Of Project Design.Comprehensive, Authoritative, Up-To-Date, Engineering Optimization Provides In-Depth Coverage Of Linear And Nonlinear Programming, Dynamic Programming, Integer Programming, And Stochastic Programming Techniques As Well As Several Breakthrough Methods, Including Genetic Algorithms, Simulated Annealing, And Neural Network-Based And Fuzzy Optimization Techniques.Designed To Function Equally Well As Either A Professional Reference Or A Graduate-Level Text, Engineering Optimization Features Many Solved Problems Taken From Several Engineering Fields, As Well As Review Questions, Important Figures, And Helpful References.Engineering Optimization Is A Valuable Working Resource For Engineers Employed In Practically All Technological Industries. It Is Also A Superior Didactic Tool For Graduate Students Of Mechanical, Civil, Electrical, Chemical And Aerospace Engineering.



Optimization In Industry


Optimization In Industry
DOWNLOAD
Author : T. A. J. Nicholson
language : en
Publisher: Transaction Publishers
Release Date : 2007

Optimization In Industry written by T. A. J. Nicholson and has been published by Transaction Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.


Problems are tackled in the same way - by searching a feasible region for an optimum. This approach helps the reader to develop the most essential of all skills - selecting appropriate techniques for different circumstances.



Algorithms For Convex Optimization


Algorithms For Convex Optimization
DOWNLOAD
Author : Nisheeth K. Vishnoi
language : en
Publisher: Cambridge University Press
Release Date : 2021-10-07

Algorithms For Convex Optimization written by Nisheeth K. Vishnoi and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-07 with Computers categories.


In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.