Teichm Ller Theory In Riemannian Geometry

DOWNLOAD
Download Teichm Ller Theory In Riemannian Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Teichm Ller Theory In Riemannian Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Teichm Ller Theory In Riemannian Geometry
DOWNLOAD
Author : Anthony Tromba
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06
Teichm Ller Theory In Riemannian Geometry written by Anthony Tromba and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
These lecture notes are based on the joint work of the author and Arthur Fischer on Teichmiiller theory undertaken in the years 1980-1986. Since then many of our colleagues have encouraged us to publish our approach to the subject in a concise format, easily accessible to a broad mathematical audience. However, it was the invitation by the faculty of the ETH Ziirich to deliver the ETH N achdiplom-Vorlesungen on this material which provided the opportunity for the author to develop our research papers into a format suitable for mathematicians with a modest background in differential geometry. We also hoped it would provide the basis for a graduate course stressing the application of fundamental ideas in geometry. For this opportunity the author wishes to thank Eduard Zehnder and Jiirgen Moser, acting director and director of the Forschungsinstitut fiir Mathematik at the ETH, Gisbert Wiistholz, responsible for the Nachdiplom Vorlesungen and the entire ETH faculty for their support and warm hospitality. This new approach to Teichmiiller theory presented here was undertaken for two reasons. First, it was clear that the classical approach, using the theory of extremal quasi-conformal mappings (in this approach we completely avoid the use of quasi-conformal maps) was not easily applicable to the theory of minimal surfaces, a field of interest of the author over many years. Second, many other active mathematicians, who at various times needed some Teichmiiller theory, have found the classical approach inaccessible to them.
Handbook Of Teichm Ller Theory
DOWNLOAD
Author : Athanase Papadopoulos
language : en
Publisher: European Mathematical Society
Release Date : 2007
Handbook Of Teichm Ller Theory written by Athanase Papadopoulos and has been published by European Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.
This multi-volume set deals with Teichmuller theory in the broadest sense, namely, as the study of moduli space of geometric structures on surfaces, with methods inspired or adapted from those of classical Teichmuller theory. The aim is to give a complete panorama of this generalized Teichmuller theory and of its applications in various fields of mathematics. The volumes consist of chapters, each of which is dedicated to a specific topic. The volume has 19 chapters and is divided into four parts: The metric and the analytic theory (uniformization, Weil-Petersson geometry, holomorphic families of Riemann surfaces, infinite-dimensional Teichmuller spaces, cohomology of moduli space, and the intersection theory of moduli space). The group theory (quasi-homomorphisms of mapping class groups, measurable rigidity of mapping class groups, applications to Lefschetz fibrations, affine groups of flat surfaces, braid groups, and Artin groups). Representation spaces and geometric structures (trace coordinates, invariant theory, complex projective structures, circle packings, and moduli spaces of Lorentz manifolds homeomorphic to the product of a surface with the real line). The Grothendieck-Teichmuller theory (dessins d'enfants, Grothendieck's reconstruction principle, and the Teichmuller theory of the solenoid). This handbook is an essential reference for graduate students and researchers interested in Teichmuller theory and its ramifications, in particular for mathematicians working in topology, geometry, algebraic geometry, dynamical systems and complex analysis. The authors are leading experts in the field.
Compact Riemann Surfaces
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-12-13
Compact Riemann Surfaces written by Jürgen Jost and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-12-13 with Mathematics categories.
This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.
Mirzakhani S Curve Counting And Geodesic Currents
DOWNLOAD
Author : Viveka Erlandsson
language : en
Publisher: Springer Nature
Release Date : 2022-09-20
Mirzakhani S Curve Counting And Geodesic Currents written by Viveka Erlandsson and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-20 with Mathematics categories.
This monograph presents an approachable proof of Mirzakhani’s curve counting theorem, both for simple and non-simple curves. Designed to welcome readers to the area, the presentation builds intuition with elementary examples before progressing to rigorous proofs. This approach illuminates new and established results alike, and produces versatile tools for studying the geometry of hyperbolic surfaces, Teichmüller theory, and mapping class groups. Beginning with the preliminaries of curves and arcs on surfaces, the authors go on to present the theory of geodesic currents in detail. Highlights include a treatment of cusped surfaces and surfaces with boundary, along with a comprehensive discussion of the action of the mapping class group on the space of geodesic currents. A user-friendly account of train tracks follows, providing the foundation for radallas, an immersed variation. From here, the authors apply these tools to great effect, offering simplified proofs of existing results and a new, more general proof of Mirzakhani’s curve counting theorem. Further applications include counting square-tiled surfaces and mapping class group orbits, and investigating random geometric structures. Mirzakhani’s Curve Counting and Geodesic Currents introduces readers to powerful counting techniques for the study of surfaces. Ideal for graduate students and researchers new to the area, the pedagogical approach, conversational style, and illuminating illustrations bring this exciting field to life. Exercises offer opportunities to engage with the material throughout. Basic familiarity with 2-dimensional topology and hyperbolic geometry, measured laminations, and the mapping class group is assumed.
Quantum Field Theory I Basics In Mathematics And Physics
DOWNLOAD
Author : Eberhard Zeidler
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-04-18
Quantum Field Theory I Basics In Mathematics And Physics written by Eberhard Zeidler and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-18 with Science categories.
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
Groups And Geometries
DOWNLOAD
Author : Lino Di Martino
language : en
Publisher: Birkhäuser
Release Date : 2013-12-01
Groups And Geometries written by Lino Di Martino and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.
On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of finite characteristic, 3. buildings, and the geometry of projective and polar spaces, and 4. geometries of sporadic simple groups. We are grateful to the authors for their efforts in providing us with manuscripts in LaTeX. Barbara Priwitzer and Thomas Hintermann, Mathematics Editors of Birkhauser, have been very helpful and supportive throughout the preparation of this volume.
Handbook Of Global Analysis
DOWNLOAD
Author : Demeter Krupka
language : en
Publisher: Elsevier
Release Date : 2011-08-11
Handbook Of Global Analysis written by Demeter Krupka and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-11 with Mathematics categories.
This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents
The Geometric Theory Of Complex Variables
DOWNLOAD
Author : Peter V. Dovbush
language : en
Publisher: Springer Nature
Release Date : 2025-01-28
The Geometric Theory Of Complex Variables written by Peter V. Dovbush and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-28 with Mathematics categories.
This book provides the reader with a broad introduction to the geometric methodology in complex analysis. It covers both single and several complex variables, creating a dialogue between the two viewpoints. Regarded as one of the 'grand old ladies' of modern mathematics, complex analysis traces its roots back 500 years. The subject began to flourish with Carl Friedrich Gauss's thesis around 1800. The geometric aspects of the theory can be traced back to the Riemann mapping theorem around 1850, with a significant milestone achieved in 1938 with Lars Ahlfors's geometrization of complex analysis. These ideas inspired many other mathematicians to adopt this perspective, leading to the proliferation of geometric theory of complex variables in various directions, including Riemann surfaces, Teichmüller theory, complex manifolds, extremal problems, and many others. This book explores all these areas, with classical geometric function theory as its main focus. Its accessible and gentle approach makes it suitable for advanced undergraduate and graduate students seeking to understand the connections among topics usually scattered across numerous textbooks, as well as experienced mathematicians with an interest in this rich field.
Riemannian Geometry And Geometric Analysis
DOWNLOAD
Author : Jürgen Jost
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-07-28
Riemannian Geometry And Geometric Analysis written by Jürgen Jost and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-07-28 with Mathematics categories.
This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. The previous edition already introduced and explained the ideas of the parabolic methods that had found a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discussed further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry. The 6th edition includes a systematic treatment of eigenvalues of Riemannian manifolds and several other additions. Also, the entire material has been reorganized in order to improve the coherence of the book. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. ... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome." Mathematical Reviews "...the material ... is self-contained. Each chapter ends with a set of exercises. Most of the paragraphs have a section ‘Perspectives’, written with the aim to place the material in a broader context and explain further results and directions." Zentralblatt MATH
Supergeometry Super Riemann Surfaces And The Superconformal Action Functional
DOWNLOAD
Author : Enno Keßler
language : en
Publisher: Springer Nature
Release Date : 2019-08-28
Supergeometry Super Riemann Surfaces And The Superconformal Action Functional written by Enno Keßler and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-28 with Mathematics categories.
This book treats the two-dimensional non-linear supersymmetric sigma model or spinning string from the perspective of supergeometry. The objective is to understand its symmetries as geometric properties of super Riemann surfaces, which are particular complex super manifolds of dimension 1|1. The first part gives an introduction to the super differential geometry of families of super manifolds. Appropriate generalizations of principal bundles, smooth families of complex manifolds and integration theory are developed. The second part studies uniformization, U(1)-structures and connections on Super Riemann surfaces and shows how the latter can be viewed as extensions of Riemann surfaces by a gravitino field. A natural geometric action functional on super Riemann surfaces is shown to reproduce the action functional of the non-linear supersymmetric sigma model using a component field formalism. The conserved currents of this action can be identified as infinitesimal deformations of the super Riemann surface. This is in surprising analogy to the theory of Riemann surfaces and the harmonic action functional on them. This volume is aimed at both theoretical physicists interested in a careful treatment of the subject and mathematicians who want to become acquainted with the potential applications of this beautiful theory.