[PDF] Testing And Tuning Market Trading Systems - eBooks Review

Testing And Tuning Market Trading Systems


Testing And Tuning Market Trading Systems
DOWNLOAD

Download Testing And Tuning Market Trading Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Testing And Tuning Market Trading Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Testing And Tuning Market Trading Systems


Testing And Tuning Market Trading Systems
DOWNLOAD
Author : Timothy Masters
language : en
Publisher: Apress
Release Date : 2018-10-26

Testing And Tuning Market Trading Systems written by Timothy Masters and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-26 with Computers categories.


Build, test, and tune financial, insurance or other market trading systems using C++ algorithms and statistics. You’ve had an idea and have done some preliminary experiments, and it looks promising. Where do you go from here? Well, this book discusses and dissects this case study approach. Seemingly good backtest performance isn't enough to justify trading real money. You need to perform rigorous statistical tests of the system's validity. Then, if basic tests confirm the quality of your idea, you need to tune your system, not just for best performance, but also for robust behavior in the face of inevitable market changes. Next, you need to quantify its expected future behavior, assessing how bad its real-life performance might actually be, and whether you can live with that. Finally, you need to find its theoretical performance limits so you know if its actual trades conform to this theoretical expectation, enabling you to dump the system if it does not liveup to expectations. This book does not contain any sure-fire, guaranteed-riches trading systems. Those are a dime a dozen... But if you have a trading system, this book will provide you with a set of tools that will help you evaluate the potential value of your system, tweak it to improve its profitability, and monitor its on-going performance to detect deterioration before it fails catastrophically. Any serious market trader would do well to employ the methods described in this book. What You Will Learn See how the 'spaghetti-on-the-wall' approach to trading system development can be done legitimately Detect overfitting early in development Estimate the probability that your system's backtest results could have been due to just good luck Regularize a predictive model so it automatically selects an optimal subset of indicator candidates Rapidly find the global optimum for any type of parameterized trading system Assess the ruggedness of your trading system against market changes Enhance the stationarity and information content of your proprietary indicators Nest one layer of walkforward analysis inside another layer to account for selection bias in complex trading systems Compute a lower bound on your system's mean future performance Bound expected periodic returns to detect on-going system deterioration before it becomes severe Estimate the probability of catastrophic drawdown Who This Book Is For Experienced C++ programmers, developers, and software engineers. Prior experience with rigorous statistical procedures to evaluate and maximize the quality of systems is recommended as well.



Modern Data Mining Algorithms In C And Cuda C


Modern Data Mining Algorithms In C And Cuda C
DOWNLOAD
Author : Timothy Masters
language : en
Publisher: Apress
Release Date : 2020-06-05

Modern Data Mining Algorithms In C And Cuda C written by Timothy Masters and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-05 with Computers categories.


Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables. As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You’ll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are: Forward selection component analysis Local feature selection Linking features and a target with a hidden Markov model Improvements on traditional stepwise selection Nominal-to-ordinal conversion All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code. The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it. What You Will Learn Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set. Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods. Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets. Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input. Who This Book Is For Intermediate to advanced data science programmers and analysts.



Deep Belief Nets In C And Cuda C Volume 1


Deep Belief Nets In C And Cuda C Volume 1
DOWNLOAD
Author : Timothy Masters
language : en
Publisher: Apress
Release Date : 2018-04-23

Deep Belief Nets In C And Cuda C Volume 1 written by Timothy Masters and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-23 with Computers categories.


Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. The first of three in a series on C++ and CUDA C deep learning and belief nets, Deep Belief Nets in C++ and CUDA C: Volume 1 shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, you’ll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. All theroutines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines. What You Will Learn Employ deep learning using C++ and CUDA C Work with supervised feedforward networks Implement restricted Boltzmann machines Use generative samplings Discover why these are important Who This Book Is For Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.



Deep Belief Nets In C And Cuda C Volume 2


Deep Belief Nets In C And Cuda C Volume 2
DOWNLOAD
Author : Timothy Masters
language : en
Publisher: Apress
Release Date : 2018-05-29

Deep Belief Nets In C And Cuda C Volume 2 written by Timothy Masters and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-29 with Computers categories.


Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You’ll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you’ll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. What You'll Learn Code for deep learning, neural networks, and AI using C++ and CUDA C Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more Use the Fourier Transform for image preprocessing Implement autoencoding via activation in the complex domain Work with algorithms for CUDA gradient computation Use the DEEP operating manual Who This Book Is For Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.



Permutation And Randomization Tests For Trading System Development


Permutation And Randomization Tests For Trading System Development
DOWNLOAD
Author : Timothy Masters
language : en
Publisher:
Release Date : 2020-02-12

Permutation And Randomization Tests For Trading System Development written by Timothy Masters and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-12 with categories.


This book provides the trading system developer with a powerful set of statistical tools for measuring vital aspects of performance that are ignored by most developers. All algorithms include intuitive justification, basic theory, all relevant equations, and highly commented C++ code for complete programs that run in a Windows Command Console. Reprogramming them in other languages should be easy, given the detailed explanations of each algorithm. The following topics are covered: Testing for overfitting at the earliest possible stage Evaluating the luckiness-versus-skill of a fully developed system before deploying it Testing the effectiveness and reliability of a trading system factory Removing selection bias when screening a large number of indicators Probability bounds for future mean returns Bounding typical and catastrophic future drawdowns Is the best indicator or model in a competition truly the best, or just the luckiest? Which markets provide truly superior profits for your trading system? What holding time for your system provides the best risk/return performance?



Statistically Sound Machine Learning For Algorithmic Trading Of Financial Instruments


Statistically Sound Machine Learning For Algorithmic Trading Of Financial Instruments
DOWNLOAD
Author : David Aronson
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2013

Statistically Sound Machine Learning For Algorithmic Trading Of Financial Instruments written by David Aronson and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Algorithmus categories.


This book serves two purposes. First, it teaches the importance of using sophisticated yet accessible statistical methods to evaluate a trading system before it is put to real-world use. In order to accommodate readers having limited mathematical background, these techniques are illustrated with step-by-step examples using actual market data, and all examples are explained in plain language. Second, this book shows how the free program TSSB (Trading System Synthesis & Boosting) can be used to develop and test trading systems. The machine learning and statistical algorithms available in TSSB go far beyond those available in other off-the-shelf development software. Intelligent use of these state-of-the-art techniques greatly improves the likelihood of obtaining a trading system whose impressive backtest results continue when the system is put to use in a trading account. Among other things, this book will teach the reader how to: Estimate future performance with rigorous algorithms Evaluate the influence of good luck in backtests Detect overfitting before deploying your system Estimate performance bias due to model fitting and selection of seemingly superior systems Use state-of-the-art ensembles of models to form consensus trade decisions Build optimal portfolios of trading systems and rigorously test their expected performance Search thousands of markets to find subsets that are especially predictable Create trading systems that specialize in specific market regimes such as trending/flat or high/low volatility More information on the TSSB program can be found at TSSBsoftware dot com.



Automation Of Trading Machine For Traders


Automation Of Trading Machine For Traders
DOWNLOAD
Author : Jacinta Chan
language : en
Publisher: Springer Nature
Release Date : 2019-12-02

Automation Of Trading Machine For Traders written by Jacinta Chan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-02 with Business & Economics categories.


This Palgrave Pivot innovatively combines new methods and approaches to building dynamic trading systems to forecast future price direction in today’s increasingly difficult and volatile financial markets. The primary purpose of this book is to provide a structured course for building robust algorithmic trading models that forecast future price direction. Chan provides insider information and insights on trading strategies; her knowledge and experience has been gained over two decades as a trader in foreign exchange, stock and derivatives markets. She guides the reader to build, evaluate, and test the predictive ability and the profitability of abnormal returns of new hybrid forecasting models.



Machine Learning For Algorithmic Trading Second Edition


Machine Learning For Algorithmic Trading Second Edition
DOWNLOAD
Author : Stefan Jansen
language : en
Publisher:
Release Date : 2020-07-31

Machine Learning For Algorithmic Trading Second Edition written by Stefan Jansen and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-31 with Computers categories.




Design Testing And Optimization Of Trading Systems


Design Testing And Optimization Of Trading Systems
DOWNLOAD
Author : Robert Pardo
language : en
Publisher: John Wiley & Sons
Release Date : 1992-08-26

Design Testing And Optimization Of Trading Systems written by Robert Pardo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992-08-26 with Business & Economics categories.


The title says it all. Concise, straight to the point guidance on developing a winning computer trading system. Copyright © Libri GmbH. All rights reserved.



Trading Systems And Methods Website


Trading Systems And Methods Website
DOWNLOAD
Author : Perry J. Kaufman
language : en
Publisher: John Wiley & Sons
Release Date : 2013-01-29

Trading Systems And Methods Website written by Perry J. Kaufman and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-29 with Business & Economics categories.


The ultimate guide to trading systems, fully revised and updated For nearly thirty years, professional and individual traders have turned to Trading Systems and Methods for detailed information on indicators, programs, algorithms, and systems, and now this fully revised Fifth Edition updates coverage for today's markets. The definitive reference on trading systems, the book explains the tools and techniques of successful trading to help traders develop a program that meets their own unique needs. Presenting an analytical framework for comparing systematic methods and techniques, this new edition offers expanded coverage in nearly all areas, including trends, momentum, arbitrage, integration of fundamental statistics, and risk management. Comprehensive and in-depth, the book describes each technique and how it can be used to a trader's advantage, and shows similarities and variations that may serve as valuable alternatives. The book also walks readers through basic mathematical and statistical concepts of trading system design and methodology, such as how much data to use, how to create an index, risk measurements, and more. Packed with examples, this thoroughly revised and updated Fifth Edition covers more systems, more methods, and more risk analysis techniques than ever before. The ultimate guide to trading system design and methods, newly revised Includes expanded coverage of trading techniques, arbitrage, statistical tools, and risk management models Written by acclaimed expert Perry J. Kaufman Features spreadsheets and TradeStation programs for a more extensive and interactive learning experience Provides readers with access to a companion website loaded with supplemental materials Written by a global leader in the trading field, Trading Systems and Methods, Fifth Edition is the essential reference to trading system design and methods updated for a post-crisis trading environment.