[PDF] Text As Data - eBooks Review

Text As Data


Text As Data
DOWNLOAD

Download Text As Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Text As Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Text As Data


Text As Data
DOWNLOAD
Author : Justin Grimmer
language : en
Publisher: Princeton University Press
Release Date : 2022-01-04

Text As Data written by Justin Grimmer and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-04 with Social Science categories.


A guide for using computational text analysis to learn about the social world From social media posts and text messages to digital government documents and archives, researchers are bombarded with a deluge of text reflecting the social world. This textual data gives unprecedented insights into fundamental questions in the social sciences, humanities, and industry. Meanwhile new machine learning tools are rapidly transforming the way science and business are conducted. Text as Data shows how to combine new sources of data, machine learning tools, and social science research design to develop and evaluate new insights. Text as Data is organized around the core tasks in research projects using text—representation, discovery, measurement, prediction, and causal inference. The authors offer a sequential, iterative, and inductive approach to research design. Each research task is presented complete with real-world applications, example methods, and a distinct style of task-focused research. Bridging many divides—computer science and social science, the qualitative and the quantitative, and industry and academia—Text as Data is an ideal resource for anyone wanting to analyze large collections of text in an era when data is abundant and computation is cheap, but the enduring challenges of social science remain. Overview of how to use text as data Research design for a world of data deluge Examples from across the social sciences and industry



Text As Data


Text As Data
DOWNLOAD
Author : Justin Grimmer
language : en
Publisher: Princeton University Press
Release Date : 2022-03-29

Text As Data written by Justin Grimmer and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-29 with Computers categories.


A guide for using computational text analysis to learn about the social world From social media posts and text messages to digital government documents and archives, researchers are bombarded with a deluge of text reflecting the social world. This textual data gives unprecedented insights into fundamental questions in the social sciences, humanities, and industry. Meanwhile new machine learning tools are rapidly transforming the way science and business are conducted. Text as Data shows how to combine new sources of data, machine learning tools, and social science research design to develop and evaluate new insights. Text as Data is organized around the core tasks in research projects using text—representation, discovery, measurement, prediction, and causal inference. The authors offer a sequential, iterative, and inductive approach to research design. Each research task is presented complete with real-world applications, example methods, and a distinct style of task-focused research. Bridging many divides—computer science and social science, the qualitative and the quantitative, and industry and academia—Text as Data is an ideal resource for anyone wanting to analyze large collections of text in an era when data is abundant and computation is cheap, but the enduring challenges of social science remain. Overview of how to use text as data Research design for a world of data deluge Examples from across the social sciences and industry



Mining Text Data


Mining Text Data
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-02-03

Mining Text Data written by Charu C. Aggarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-03 with Computers categories.


Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.



Text Data Mining


Text Data Mining
DOWNLOAD
Author : Chengqing Zong
language : en
Publisher: Springer Nature
Release Date : 2021-05-22

Text Data Mining written by Chengqing Zong and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-22 with Computers categories.


This book discusses various aspects of text data mining. Unlike other books that focus on machine learning or databases, it approaches text data mining from a natural language processing (NLP) perspective. The book offers a detailed introduction to the fundamental theories and methods of text data mining, ranging from pre-processing (for both Chinese and English texts), text representation and feature selection, to text classification and text clustering. It also presents the predominant applications of text data mining, for example, topic modeling, sentiment analysis and opinion mining, topic detection and tracking, information extraction, and automatic text summarization. Bringing all the related concepts and algorithms together, it offers a comprehensive, authoritative and coherent overview. Written by three leading experts, it is valuable both as a textbook and as a reference resource for students, researchers and practitioners interested in text data mining. It can also be used for classes on text data mining or NLP.



Practical Text Analytics


Practical Text Analytics
DOWNLOAD
Author : Murugan Anandarajan
language : en
Publisher: Springer
Release Date : 2018-10-19

Practical Text Analytics written by Murugan Anandarajan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-19 with Business & Economics categories.


This book introduces text analytics as a valuable method for deriving insights from text data. Unlike other text analytics publications, Practical Text Analytics: Maximizing the Value of Text Data makes technical concepts accessible to those without extensive experience in the field. Using text analytics, organizations can derive insights from content such as emails, documents, and social media. Practical Text Analytics is divided into five parts. The first part introduces text analytics, discusses the relationship with content analysis, and provides a general overview of text mining methodology. In the second part, the authors discuss the practice of text analytics, including data preparation and the overall planning process. The third part covers text analytics techniques such as cluster analysis, topic models, and machine learning. In the fourth part of the book, readers learn about techniques used to communicate insights from text analysis, including data storytelling. The final part of Practical Text Analytics offers examples of the application of software programs for text analytics, enabling readers to mine their own text data to uncover information.



Text As Data


Text As Data
DOWNLOAD
Author : Barry DeVille
language : en
Publisher: John Wiley & Sons
Release Date : 2021-10-05

Text As Data written by Barry DeVille and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-05 with Computers categories.


Text As Data: Combining qualitative and quantitative algorithms within the SAS system for accurate, effective and understandable text analytics The need for powerful, accurate and increasingly automatic text analysis software in modern information technology has dramatically increased. Fields as diverse as financial management, fraud and cybercrime prevention, Pharmaceutical R&D, social media marketing, customer care, and health services are implementing more comprehensive text-inclusive, analytics strategies. Text as Data: Computational Methods of Understanding Written Expression Using SAS presents an overview of text analytics and the critical role SAS software plays in combining linguistic and quantitative algorithms in the evolution of this dynamic field. Drawing on over two decades of experience in text analytics, authors Barry deVille and Gurpreet Singh Bawa examine the evolution of text mining and cloud-based solutions, and the development of SAS Visual Text Analytics. By integrating quantitative data and textual analysis with advanced computer learning principles, the authors demonstrate the combined advantages of SAS compared to standard approaches, and show how approaching text as qualitative data within a quantitative analytics framework produces more detailed, accurate, and explanatory results. Understand the role of linguistics, machine learning, and multiple data sources in the text analytics workflow Understand how a range of quantitative algorithms and data representations reflect contextual effects to shape meaning and understanding Access online data and code repositories, videos, tutorials, and case studies Learn how SAS extends quantitative algorithms to produce expanded text analytics capabilities Redefine text in terms of data for more accurate analysis This book offers a thorough introduction to the framework and dynamics of text analytics—and the underlying principles at work—and provides an in-depth examination of the interplay between qualitative-linguistic and quantitative, data-driven aspects of data analysis. The treatment begins with a discussion on expression parsing and detection and provides insight into the core principles and practices of text parsing, theme, and topic detection. It includes advanced topics such as contextual effects in numeric and textual data manipulation, fine-tuning text meaning and disambiguation. As the first resource to leverage the power of SAS for text analytics, Text as Data is an essential resource for SAS users and data scientists in any industry or academic application.



Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications


Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications
DOWNLOAD
Author : Gary D. Miner
language : en
Publisher: Academic Press
Release Date : 2012-01-25

Practical Text Mining And Statistical Analysis For Non Structured Text Data Applications written by Gary D. Miner and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-25 with Mathematics categories.


Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. Winner of a 2012 PROSE Award in Computing and Information Sciences from the Association of American Publishers, this book presents a comprehensive how-to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities. The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. - Extensive case studies, most in a tutorial format, allow the reader to 'click through' the example using a software program, thus learning to conduct text mining analyses in the most rapid manner of learning possible - Numerous examples, tutorials, power points and datasets available via companion website on Elsevierdirect.com - Glossary of text mining terms provided in the appendix



Text Mining With R


Text Mining With R
DOWNLOAD
Author : Julia Silge
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-06-12

Text Mining With R written by Julia Silge and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-12 with Computers categories.


Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you’ll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You’ll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You’ll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media. Learn how to apply the tidy text format to NLP Use sentiment analysis to mine the emotional content of text Identify a document’s most important terms with frequency measurements Explore relationships and connections between words with the ggraph and widyr packages Convert back and forth between R’s tidy and non-tidy text formats Use topic modeling to classify document collections into natural groups Examine case studies that compare Twitter archives, dig into NASA metadata, and analyze thousands of Usenet messages



The Sage Handbook Of Research Methods In Political Science And International Relations


The Sage Handbook Of Research Methods In Political Science And International Relations
DOWNLOAD
Author : Luigi Curini
language : en
Publisher: SAGE
Release Date : 2020-04-09

The Sage Handbook Of Research Methods In Political Science And International Relations written by Luigi Curini and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-09 with Political Science categories.


The SAGE Handbook of Research Methods in Political Science and International Relations offers a comprehensive overview of research processes in social science — from the ideation and design of research projects, through the construction of theoretical arguments, to conceptualization, measurement, & data collection, and quantitative & qualitative empirical analysis — exposited through 65 major new contributions from leading international methodologists. Each chapter surveys, builds upon, and extends the modern state of the art in its area. Following through its six-part organization, undergraduate and graduate students, researchers and practicing academics will be guided through the design, methods, and analysis of issues in Political Science and International Relations: Part One: Formulating Good Research Questions & Designing Good Research Projects Part Two: Methods of Theoretical Argumentation Part Three: Conceptualization & Measurement Part Four: Large-Scale Data Collection & Representation Methods Part Five: Quantitative-Empirical Methods Part Six: Qualitative & "Mixed" Methods



Text Mining For Qualitative Data Analysis In The Social Sciences


Text Mining For Qualitative Data Analysis In The Social Sciences
DOWNLOAD
Author : Gregor Wiedemann
language : en
Publisher: Springer
Release Date : 2016-08-23

Text Mining For Qualitative Data Analysis In The Social Sciences written by Gregor Wiedemann and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-23 with Social Science categories.


Gregor Wiedemann evaluates text mining applications for social science studies with respect to conceptual integration of consciously selected methods, systematic optimization of algorithms and workflows, and methodological reflections relating to empirical research. In an exemplary study, he introduces workflows to analyze a corpus of around 600,000 newspaper articles on the subject of “democratic demarcation” in Germany. He provides a valuable resource for innovative measures to social scientists and computer scientists in the field of applied natural language processing.