[PDF] The Analysis Of Solutions Of Elliptic Equations - eBooks Review

The Analysis Of Solutions Of Elliptic Equations


The Analysis Of Solutions Of Elliptic Equations
DOWNLOAD

Download The Analysis Of Solutions Of Elliptic Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Analysis Of Solutions Of Elliptic Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The Analysis Of Solutions Of Elliptic Equations


The Analysis Of Solutions Of Elliptic Equations
DOWNLOAD
Author : Nikolai Tarkhanov
language : en
Publisher: Springer Science & Business Media
Release Date : 1997-04-30

The Analysis Of Solutions Of Elliptic Equations written by Nikolai Tarkhanov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-04-30 with Mathematics categories.


This book is intended as a continuation of my book "Parametrix Method in the Theory of Differential Complexes" (see [291]). There, we considered complexes of differential operators between sections of vector bundles and we strived more than for details. Although there are many applications to for maximal generality overdetermined systems, such an approach left me with a certain feeling of dissat- faction, especially since a large number of interesting consequences can be obtained without a great effort. The present book is conceived as an attempt to shed some light on these new applications. We consider, as a rule, differential operators having a simple structure on open subsets of Rn. Currently, this area is not being investigated very actively, possibly because it is already very highly developed actively (cf. for example the book of Palamodov [213]). However, even in this (well studied) situation the general ideas from [291] allow us to obtain new results in the qualitative theory of differential equations and frequently in definitive form. The greater part of the material presented is related to applications of the L- rent series for a solution of a system of differential equations, which is a convenient way of writing the Green formula. The culminating application is an analog of the theorem of Vitushkin [303] for uniform and mean approximation by solutions of an elliptic system. Somewhat afield are several questions on ill-posedness, but the parametrix method enables us to obtain here a series of hitherto unknown facts.



Elliptic Partial Differential Equations


Elliptic Partial Differential Equations
DOWNLOAD
Author : Lucio Boccardo
language : en
Publisher: Walter de Gruyter
Release Date : 2013-10-29

Elliptic Partial Differential Equations written by Lucio Boccardo and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-29 with Mathematics categories.


Elliptic partial differential equations is one of the main and most active areas in mathematics. This book is devoted to the study of linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason this monograph is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.



Convex Analysis And Nonlinear Geometric Elliptic Equations


Convex Analysis And Nonlinear Geometric Elliptic Equations
DOWNLOAD
Author : Ilya J. Bakelman
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Convex Analysis And Nonlinear Geometric Elliptic Equations written by Ilya J. Bakelman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.



The Analysis Of Solutions Of Elliptic Equations


The Analysis Of Solutions Of Elliptic Equations
DOWNLOAD
Author : Nikolai Tarkhanov
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

The Analysis Of Solutions Of Elliptic Equations written by Nikolai Tarkhanov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


This book is intended as a continuation of my book "Parametrix Method in the Theory of Differential Complexes" (see [291]). There, we considered complexes of differential operators between sections of vector bundles and we strived more than for details. Although there are many applications to for maximal generality overdetermined systems, such an approach left me with a certain feeling of dissat- faction, especially since a large number of interesting consequences can be obtained without a great effort. The present book is conceived as an attempt to shed some light on these new applications. We consider, as a rule, differential operators having a simple structure on open subsets of Rn. Currently, this area is not being investigated very actively, possibly because it is already very highly developed actively (cf. for example the book of Palamodov [213]). However, even in this (well studied) situation the general ideas from [291] allow us to obtain new results in the qualitative theory of differential equations and frequently in definitive form. The greater part of the material presented is related to applications of the L- rent series for a solution of a system of differential equations, which is a convenient way of writing the Green formula. The culminating application is an analog of the theorem of Vitushkin [303] for uniform and mean approximation by solutions of an elliptic system. Somewhat afield are several questions on ill-posedness, but the parametrix method enables us to obtain here a series of hitherto unknown facts.



Fine Regularity Of Solutions Of Elliptic Partial Differential Equations


Fine Regularity Of Solutions Of Elliptic Partial Differential Equations
DOWNLOAD
Author : Jan Malý
language : en
Publisher: American Mathematical Soc.
Release Date : 1997

Fine Regularity Of Solutions Of Elliptic Partial Differential Equations written by Jan Malý and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.


The primary objective of this monograph is to give a comprehensive exposition of results surrounding the work of the authors concerning boundary regularity of weak solutions of second order elliptic quasilinear equations in divergence form. The book also contains a complete development of regularity of solutions of variational inequalities, including the double obstacle problem, where the obstacles are allowed to be discontinuous. The book concludes with a chapter devoted to the existence theory thus providing the reader with a complete treatment of the subject ranging from regularity of weak solutions to the existence of weak solutions.



Direct Methods In The Theory Of Elliptic Equations


Direct Methods In The Theory Of Elliptic Equations
DOWNLOAD
Author : Jindrich Necas
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-10-06

Direct Methods In The Theory Of Elliptic Equations written by Jindrich Necas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-06 with Mathematics categories.


Nečas’ book Direct Methods in the Theory of Elliptic Equations, published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Nečas’ work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library. The volume gives a self-contained presentation of the elliptic theory based on the "direct method", also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame’s system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which "when going beyond the scalar equations of second order" turns out to be a very natural class. These choices reflect the author's opinion that the Lamesystem and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications.



Semilinear Elliptic Equations For Beginners


Semilinear Elliptic Equations For Beginners
DOWNLOAD
Author : Marino Badiale
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-12-07

Semilinear Elliptic Equations For Beginners written by Marino Badiale and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-12-07 with Mathematics categories.


Semilinear elliptic equations are of fundamental importance for the study of geometry, physics, mechanics, engineering and life sciences. The variational approach to these equations has experienced spectacular success in recent years, reaching a high level of complexity and refinement, with a multitude of applications. Additionally, some of the simplest variational methods are evolving as classical tools in the field of nonlinear differential equations. This book is an introduction to variational methods and their applications to semilinear elliptic problems. Providing a comprehensive overview on the subject, this book will support both student and teacher engaged in a first course in nonlinear elliptic equations. The material is introduced gradually, and in some cases redundancy is added to stress the fundamental steps in theory-building. Topics include differential calculus for functionals, linear theory, and existence theorems by minimization techniques and min-max procedures. Requiring a basic knowledge of Analysis, Functional Analysis and the most common function spaces, such as Lebesgue and Sobolev spaces, this book will be of primary use to graduate students based in the field of nonlinear partial differential equations. It will also serve as valuable reading for final year undergraduates seeking to learn about basic working tools from variational methods and the management of certain types of nonlinear problems.



Functional Spaces For The Theory Of Elliptic Partial Differential Equations


Functional Spaces For The Theory Of Elliptic Partial Differential Equations
DOWNLOAD
Author : Françoise Demengel
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-24

Functional Spaces For The Theory Of Elliptic Partial Differential Equations written by Françoise Demengel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-24 with Mathematics categories.


The theory of elliptic boundary problems is fundamental in analysis and the role of spaces of weakly differentiable functions (also called Sobolev spaces) is essential in this theory as a tool for analysing the regularity of the solutions. This book offers on the one hand a complete theory of Sobolev spaces, which are of fundamental importance for elliptic linear and non-linear differential equations, and explains on the other hand how the abstract methods of convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. The book also considers other kinds of functional spaces which are useful for treating variational problems such as the minimal surface problem. The main purpose of the book is to provide a tool for graduate and postgraduate students interested in partial differential equations, as well as a useful reference for researchers active in the field. Prerequisites include a knowledge of classical analysis, differential calculus, Banach and Hilbert spaces, integration and the related standard functional spaces, as well as the Fourier transformation on the Schwartz space. There are complete and detailed proofs of almost all the results announced and, in some cases, more than one proof is provided in order to highlight different features of the result. Each chapter concludes with a range of exercises of varying levels of difficulty, with hints to solutions provided for many of them.



Qualitative Analysis Of Nonlinear Elliptic Partial Differential Equations


Qualitative Analysis Of Nonlinear Elliptic Partial Differential Equations
DOWNLOAD
Author : Vicenţiu Rǎdulescu
language : en
Publisher: Hindawi Publishing Corporation
Release Date : 2008

Qualitative Analysis Of Nonlinear Elliptic Partial Differential Equations written by Vicenţiu Rǎdulescu and has been published by Hindawi Publishing Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Differential equations, Elliptic categories.


This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.



Oblique Derivative Problems For Elliptic Equations


Oblique Derivative Problems For Elliptic Equations
DOWNLOAD
Author : Gary M. Lieberman
language : en
Publisher: World Scientific
Release Date : 2013

Oblique Derivative Problems For Elliptic Equations written by Gary M. Lieberman and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Science categories.


This book gives an up-to-date exposition on the theory of oblique derivative problems for elliptic equations. The modern analysis of shock reflection was made possible by the theory of oblique derivative problems developed by the author. Such problems also arise in many other physical situations such as the shape of a capillary surface and problems of optimal transportation. The author begins the book with basic results for linear oblique derivative problems and work through the theory for quasilinear and nonlinear problems. The final chapter discusses some of the applications. In addition, notes to each chapter give a history of the topics in that chapter and suggestions for further reading.