The Art Of Random Walks

DOWNLOAD
Download The Art Of Random Walks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Art Of Random Walks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Random Walk A Modern Introduction
DOWNLOAD
Author : Gregory F. Lawler
language : en
Publisher: Cambridge University Press
Release Date : 2010-06-24
Random Walk A Modern Introduction written by Gregory F. Lawler and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-24 with Mathematics categories.
Random walks are stochastic processes formed by successive summation of independent, identically distributed random variables and are one of the most studied topics in probability theory. This contemporary introduction evolved from courses taught at Cornell University and the University of Chicago by the first author, who is one of the most highly regarded researchers in the field of stochastic processes. This text meets the need for a modern reference to the detailed properties of an important class of random walks on the integer lattice. It is suitable for probabilists, mathematicians working in related fields, and for researchers in other disciplines who use random walks in modeling.
An Unbounded Experience In Random Walks With Applications
DOWNLOAD
Author : Michael F Shlesinger
language : en
Publisher: World Scientific
Release Date : 2021-06-29
An Unbounded Experience In Random Walks With Applications written by Michael F Shlesinger and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-29 with Mathematics categories.
This volume comprises the author's account of the development of novel results in random walk theory and its applications during the fractal and chaos revolutions. The early history of probability is presented in an engaging manner, and peppered with pitfalls and paradoxes. Readers will find the introduction of Paul Lévy's work via Mandelbrot's Lévy flights which are featured uniquely as Weierstrass and Riemann random walks.Generalizations to coupled memories, internal states and fractal time are introduced at the level for graduate students. Mathematical developments are explained including Green's functions, inverse Mellin transforms, Jacobians, and matrix methods. Applications are made to anomalous diffusion and conductivity in amorphous semiconductors and supercooled liquids. The glass transition is discussed especially for pressure effects.All along the way, personal stories are recounted and special appreciations are made to Elliott Montroll and Harvey Scher for their ever-expanding influence on the field of non-equilibrium anomalous processes that now are found in topics including disordered materials, water table processes, animal foraging, blinking quantum dots, rotating flows, optical lattices, dynamical strange attractors and strange kinetics.
Asymptotic Analysis Of Random Walks
DOWNLOAD
Author : Aleksandr Alekseevich Borovkov
language : en
Publisher: Cambridge University Press
Release Date : 2008
Asymptotic Analysis Of Random Walks written by Aleksandr Alekseevich Borovkov and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Asymptotic expansions categories.
This monograph is devoted to studying the asymptotic behaviour of the probabilities of large deviations of the trajectories of random walks, with 'heavy-tailed' (in particular, regularly varying, sub- and semiexponential) jump distributions. It presents a unified and systematic exposition.
The Art Of Random Walks
DOWNLOAD
Author : Andras Telcs
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-17
The Art Of Random Walks written by Andras Telcs and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-17 with Mathematics categories.
Einstein proved that the mean square displacement of Brownian motion is proportional to time. He also proved that the diffusion constant depends on the mass and on the conductivity (sometimes referred to Einstein’s relation). The main aim of this book is to reveal similar connections between the physical and geometric properties of space and diffusion. This is done in the context of random walks in the absence of algebraic structure, local or global spatial symmetry or self-similarity. The author studies the heat diffusion at this general level and discusses the following topics: The multiplicative Einstein relation, Isoperimetric inequalities, Heat kernel estimates Elliptic and parabolic Harnack inequality.
Principles Of Random Walk
DOWNLOAD
Author : Frank Spitzer
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
Principles Of Random Walk written by Frank Spitzer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
In this edition a large number of errors have been corrected, an occasional proof has been streamlined, and a number of references are made to recent pro gress. These references are to a supplementary bibliography, whose items are referred to as [S1] through [S26]. A thorough revision was not attempted. The development of the subject in the last decade would have required a treatment in a much more general con text. It is true that a number of interesting questions remain open in the concrete setting of random walk on the integers. (See [S 19] for a recent survey). On the other hand, much of the material of this book (foundations, fluctuation theory, renewal theorems) is now available in standard texts, e.g. Feller [S9], Breiman [S1], Chung [S4] in the more general setting of random walk on the real line. But the major new development since the first edition occurred in 1969, when D. Ornstein [S22] and C. J. Stone [S26] succeeded in extending the recurrent potential theory in· Chapters II and VII from the integers to the reals. By now there is an extensive and nearly complete potential theory of recurrent random walk on locally compact groups, Abelian ( [S20], [S25]) as well as non Abelian ( [S17], [S2] ). Finally, for the non-specialist there exists now an unsurpassed brief introduction to probabilistic potential theory, in the context of simple random walk and Brownian motion, by Dynkin and Yushkevich [S8].
Random Walks On Infinite Graphs And Groups
DOWNLOAD
Author : Wolfgang Woess
language : en
Publisher: Cambridge University Press
Release Date : 2000-02-13
Random Walks On Infinite Graphs And Groups written by Wolfgang Woess and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-02-13 with Mathematics categories.
The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.
Random Walks On Reductive Groups
DOWNLOAD
Author : Yves Benoist
language : en
Publisher:
Release Date : 2016
Random Walks On Reductive Groups written by Yves Benoist and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Random walks (Mathematics) categories.
The classical theory of Random Walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple - or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
The Art Of Random Walks
DOWNLOAD
Author : András Telcs
language : en
Publisher:
Release Date : 2006-01-01
The Art Of Random Walks written by András Telcs and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-01 with Random walks (Mathematics) categories.
Einstein proved that the mean square displacement of Brownian motion is proportional to time. He also proved that the diffusion constant depends on the mass and on the conductivity (sometimes referred to Einstein's relation). The main aim of this book is to reveal similar connections between the physical and geometric properties of space and diffusion. This is done in the context of random walks in the absence of algebraic structure, local or global spatial symmetry or self-similarity. The author studies the heat diffusion at this general level and discusses the following topics: The multiplicative Einstein relation; Isoperimetric inequalities; Heat kernel estimates and Elliptic and parabolic Harnack inequality.
Very First Steps In Random Walks
DOWNLOAD
Author : Norbert Henze
language : en
Publisher: Springer Nature
Release Date : 2025-02-11
Very First Steps In Random Walks written by Norbert Henze and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-11 with Mathematics categories.
With this book, which is based on the third edition of a book first written in German about random walks, the author succeeds in a remarkably playful manner in captivating the reader with numerous surprising random phenomena and non-standard limit theorems related to simple random walks and related topics. The work stands out with its consistently problem-oriented, lively presentation, which is further enhanced by 100 illustrative images. The text includes 53 self-assessment questions, with answers provided at the end of each chapter. Additionally, 74 exercises with solutions assist in understanding the material deeply. The text frequently engages in concrete model-building, and the resulting findings are thoroughly discussed and interconnected. Students who have tested this work in introductory seminars on stochastics were particularly fascinated by the interplay of geometric arguments (reflection principle), combinatorics, elementary stochastics, and analysis. This book is a translation of an original German edition. The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation.
Random Walk In Random And Non Random Environments
DOWNLOAD
Author : P l Rvsz
language : en
Publisher: World Scientific
Release Date : 2013
Random Walk In Random And Non Random Environments written by P l Rvsz and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Mathematics categories.
The simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results OCo mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk.Since the first and second editions were published in 1990 and 2005, a number of new results have appeared in the literature. The first two editions contained many unsolved problems and conjectures which have since been settled; this third, revised and enlarged edition includes those new results. In this edition, a completely new part is included concerning Simple Random Walks on Graphs. Properties of random walks on several concrete graphs have been studied in the last decade. Some of the obtained results are also presented.