The Beginner S Guide To Data Science

DOWNLOAD
Download The Beginner S Guide To Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Beginner S Guide To Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
The Beginner S Guide To Data Science
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2024-03-27
The Beginner S Guide To Data Science written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-27 with Education categories.
In today’s data-driven world, businesses and industries constantly seek insights to drive innovation, enhance decision-making, and stay ahead of the curve. Data science is not just a skill but a superpower that empowers you to extract meaningful patterns and knowledge from raw data, unlocking limitless opportunities. The theme of data science is to tell a story from data. There are many tools to help you build a narrative, but you should be focused on something other than the tool since the end is more important than the means. If you are a beginner, how should you embark on data science? You can learn many models, read many examples, and eventually gain the right mindset to handle a data science project. You can also learn the data science mindset first and then learn models that fit the picture when needed. The Beginner’s Guide to Data Science is your gateway to learn the data science mindset from examples. This ebook is written in the engaging and approachable style you are familiar with from Machine Learning Mastery. Discover exactly how to start and what the thought process is in dealing with a data science project.
Python For Data Science
DOWNLOAD
Author : Erick Thompson
language : en
Publisher:
Release Date : 2020-10-27
Python For Data Science written by Erick Thompson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-27 with categories.
Are you looking for a crash course that will help you learn Python? Do you want to master data science using python? If yes, then keep reading! Python is one of the most popular programming languages in the word in 2020 and specially for data science. Every day people use it to do cool things like Automation, they use it in Artificial Intelligence, Machine Learning, as well as Building Applications and Websites like Instagram and Dropbox. YouTube, Pinterest, and SurveyMonkey are all built on Python. So if you are looking for a trendy job, like data scientist, Python is for you. This is a Python guide with 2 Books in 1: Python crash course Python for data analysis Python has seen an explosion in popularity in recent years, driven by several aspects that make it an incredibly versatile and intuitive language. Moreover, data analysis plays a significant job in numerous parts of your regular day to day existence today. Organizations use information to Understand Their Customer Needs and produce the Best Possible Product or Service. Python Programming Language is one of the best framework with regards to information examination. Data Scientist is the most requested job of the 21st century and Python is the most popular programming language of the 21st century. So it's pretty obvious that anyone have skills in both Data Science and Python will be in great demand in industry. You needn't bother with an exhausting and costly reading material. This guide is the best one for every readers. This guide covers: The world of data science technologies Application of machine learning Data scientist: the sexiest job in the 21st century Learning Python from scratch Data analysis with Python NumPy for numerical data processing Data visualization with Python Projects on Python And much more! Despite its simplicity, Python is also sturdy and robust enough to carry out complex scientific and mathematical tasks. Python has been designed with features that drastically simplify the visualization and analysis of data, and Python is also the go-to choice for the creation of machine learning models and artificial intelligence. Be it machine learning, data analytics, data processing, web development, enterprise software development or taking the photo of Blackhole: Python is everywhere. Beloved by the data scientists and new generation developers, Pyhton will eat the word! Ready to get started? Click the BUY NOW button!
R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12
R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Data Science For Business Professionals
DOWNLOAD
Author : Probyto Data Science and Consulting Pvt. Ltd.
language : en
Publisher: BPB Publications
Release Date : 2020-05-06
Data Science For Business Professionals written by Probyto Data Science and Consulting Pvt. Ltd. and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-06 with Computers categories.
Primer into the multidisciplinary world of Data Science KEY FEATURESÊÊ - Explore and use the key concepts of Statistics required to solve data science problems - Use Docker, Jenkins, and Git for Continuous Development and Continuous Integration of your web app - Learn how to build Data Science solutions with GCP and AWS DESCRIPTIONÊ The book will initially explain the What-Why of Data Science and the process of solving a Data Science problem. The fundamental concepts of Data Science, such as Statistics, Machine Learning, Business Intelligence, Data pipeline, and Cloud Computing, will also be discussed. All the topics will be explained with an example problem and will show how the industry approaches to solve such a problem. The book will pose questions to the learners to solve the problems and build the problem-solving aptitude and effectively learn. The book uses Mathematics wherever necessary and will show you how it is implemented using Python with the help of an example dataset.Ê WHAT WILL YOU LEARNÊÊ - Understand the multi-disciplinary nature of Data Science - Get familiar with the key concepts in Mathematics and Statistics - Explore a few key ML algorithms and their use cases - Learn how to implement the basics of Data Pipelines - Get an overview of Cloud Computing & DevOps - Learn how to create visualizations using Tableau WHO THIS BOOK IS FORÊ This book is ideal for Data Science enthusiasts who want to explore various aspects of Data Science. Useful for Academicians, Business owners, and Researchers for a quick reference on industrial practices in Data Science.Ê TABLE OF CONTENTS 1. Data Science in Practice 2. Mathematics Essentials 3. Statistics Essentials 4. Exploratory Data Analysis 5. Data preprocessing 6. Feature Engineering 7. Machine learning algorithms 8. Productionizing ML models 9. Data Flows in Enterprises 10. Introduction to Databases 11. Introduction to Big Data 12. DevOps for Data Science 13. Introduction to Cloud Computing 14. Deploy Model to Cloud 15. Introduction to Business IntelligenceÊ 16. Data Visualization Tools 17. Industry Use Case 1 Ð FormAssist 18. Industry Use Case 2 Ð PeopleReporter 19. Data Science Learning Resources 20. Do It Your Self Challenges 21. MCQs for Assessments
Sql For Data Scientists
DOWNLOAD
Author : Renee M. P. Teate
language : en
Publisher: Wiley
Release Date : 2021-09-15
Sql For Data Scientists written by Renee M. P. Teate and has been published by Wiley this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-15 with Computers categories.
Jump-start your career as a data scientist—learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that’s dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn’t cover SQL broadly. Instead, you’ll learn the subset of SQL skills that data analysts and data scientists use frequently. You’ll also gain practical advice and direction on "how to think about constructing your dataset." Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner’s perspective, moving your data scientist career forward!
A Hands On Introduction To Data Science
DOWNLOAD
Author : Chirag Shah
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-02
A Hands On Introduction To Data Science written by Chirag Shah and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-02 with Business & Economics categories.
An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.
Fundamentals Of Data Science
DOWNLOAD
Author : Samuel Burns
language : en
Publisher:
Release Date : 2019-09-17
Fundamentals Of Data Science written by Samuel Burns and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-17 with Big data categories.
"This book is for students or anyone, with limited or no prior programming, statistics, and data analytics knowledge. This short guide is ideal for absolute beginners, or anyone who wants to acquire a basic working knowledge of data science. It is an excellent guide if you want to learn about the principals of data science from scratch, in just a few hours. The author discussed everything that you need to know about data science. First, you are guided to learn the meaning of data science. The history of data science has been discussed to help you know how people came to realize that data is a rich source of knowledge and intelligence. The theories underlying data science have been discussed. Examples include decision and estimation theories. The author discussed the various machine learning algorithms used in data science and the various steps one has to undergo when performing data science tasks, from data collection to data presentation and visualization. The author helps you to know the various ways through which you can apply data science in your business for increased profits. A simple language has been used to ensure ease of understanding, especially for beginners." --
A Beginner S Guide To Data Science
DOWNLOAD
Author : Enamul Haque
language : en
Publisher:
Release Date : 2023-01-06
A Beginner S Guide To Data Science written by Enamul Haque and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-06 with categories.
This book is designed for aspiring data scientists who want to start their careers in data science, even if they don't have coding skills. It provides a comprehensive introduction to the foundations of data science and its applications, using simple language that is easy for beginners to understand. No technical expertise is required to master the material in this book. It is an ideal resource for anyone looking to learn about data science in an accessible and straightforward way. Key features include: Introduction to data science History of data science Data science life-cycle Data science tools and technologies Data science methodology Data science models Developing data science business strategy Managing data science projects Becoming a data scientist, data engineer etc. Big data Data Mining Artificial intelligence Machine learning Deep learning Neural networks Mathematical analysis Statistical modelling Understanding the fundamentals of data science programming languages Database structures and principles Robotic Process Automation Data science acronyms You need to know And a lot more.
The Beginner S Guide To Data Science
DOWNLOAD
Author : Robert Ball
language : en
Publisher: Springer Nature
Release Date : 2022-11-15
The Beginner S Guide To Data Science written by Robert Ball and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-15 with Computers categories.
This book discusses the principles and practical applications of data science, addressing key topics including data wrangling, statistics, machine learning, data visualization, natural language processing and time series analysis. Detailed investigations of techniques used in the implementation of recommendation engines and the proper selection of metrics for distance-based analysis are also covered. Utilizing numerous comprehensive code examples, figures, and tables to help clarify and illuminate essential data science topics, the authors provide an extensive treatment and analysis of real-world questions, focusing especially on the task of determining and assessing answers to these questions as expeditiously and precisely as possible. This book addresses the challenges related to uncovering the actionable insights in “big data,” leveraging database and data collection tools such as web scraping and text identification. This book is organized as 11 chapters, structured as independent treatments of the following crucial data science topics: Data gathering and acquisition techniques including data creation Managing, transforming, and organizing data to ultimately package the information into an accessible format ready for analysis Fundamentals of descriptive statistics intended to summarize and aggregate data into a few concise but meaningful measurements Inferential statistics that allow us to infer (or generalize) trends about the larger population based only on the sample portion collected and recorded Metrics that measure some quantity such as distance, similarity, or error and which are especially useful when comparing one or more data observations Recommendation engines representing a set of algorithms designed to predict (or recommend) a particular product, service, or other item of interest a user or customer wishes to buy or utilize in some manner Machine learning implementations and associated algorithms, comprising core data science technologies with many practical applications, especially predictive analytics Natural Language Processing, which expedites the parsing and comprehension of written and spoken language in an effective and accurate manner Time series analysis, techniques to examine and generate forecasts about the progress and evolution of data over time Data science provides the methodology and tools to accurately interpret an increasing volume of incoming information in order to discern patterns, evaluate trends, and make the right decisions. The results of data science analysis provide real world answers to real world questions. Professionals working on data science and business intelligence projects as well as advanced-level students and researchers focused on data science, computer science, business and mathematics programs will benefit from this book.
Python For Data Science
DOWNLOAD
Author : Ethan Williams
language : en
Publisher:
Release Date : 2019-08-18
Python For Data Science written by Ethan Williams and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-18 with categories.
This book is a comprehensive guide for beginners to learn Python Programming, especially its application for Data Science. While the lessons in this book are targeted at the absolute beginner to programming, people at various levels of proficiency in Python, or any other programming languages can also learn some basics and concepts of data science. A few Python libraries are introduced, including NumPy, Pandas, Matplotlib, and Seaborn for data analysis and visualisation. To make the lessons more intuitive and relatable, practical examples and applications of each lesson are given. The reader is equally encouraged to practise the techniques via exercises, within and at the end of the relevant chapters. To help the reader get a full learning experience, there are references to relevant reading and practice materials, and the reader is encouraged to click these links and explore the possibilities they offer. It is expected that with consistency in learning and practicing the reader can master Python and the basics of its application in data science. The only limitation to the reader's progress, however, is themselves!