[PDF] The Development Of Deep Learning Technologies - eBooks Review

The Development Of Deep Learning Technologies


The Development Of Deep Learning Technologies
DOWNLOAD

Download The Development Of Deep Learning Technologies PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Development Of Deep Learning Technologies book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The Development Of Deep Learning Technologies


The Development Of Deep Learning Technologies
DOWNLOAD
Author : China Info & Comm Tech Grp Corp
language : en
Publisher: Springer Nature
Release Date : 2020-07-13

The Development Of Deep Learning Technologies written by China Info & Comm Tech Grp Corp and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-13 with Computers categories.


This book is a part of the Blue Book series “Research on the Development of Electronic Information Engineering Technology in China,” which explores the cutting edge of deep learning studies. A subfield of machine learning, deep learning differs from conventional machine learning methods in its ability to learn multiple levels of representation and abstraction by using several layers of nonlinear modules for feature extraction and transformation. The extensive use and huge success of deep learning in speech, CV, and NLP have led to significant advances toward the full materialization of AI. Focusing on the development of deep learning technologies, this book also discusses global trends, the status of deep learning development in China and the future of deep learning.



Deep Learning For Coders With Fastai And Pytorch


Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29

Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.


Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala



Deep Learning Algorithms And Applications


Deep Learning Algorithms And Applications
DOWNLOAD
Author : Witold Pedrycz
language : en
Publisher: Springer Nature
Release Date : 2019-10-23

Deep Learning Algorithms And Applications written by Witold Pedrycz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-23 with Technology & Engineering categories.


This book presents a wealth of deep-learning algorithms and demonstrates their design process. It also highlights the need for a prudent alignment with the essential characteristics of the nature of learning encountered in the practical problems being tackled. Intended for readers interested in acquiring practical knowledge of analysis, design, and deployment of deep learning solutions to real-world problems, it covers a wide range of the paradigm’s algorithms and their applications in diverse areas including imaging, seismic tomography, smart grids, surveillance and security, and health care, among others. Featuring systematic and comprehensive discussions on the development processes, their evaluation, and relevance, the book offers insights into fundamental design strategies for algorithms of deep learning.



Deep Learning


Deep Learning
DOWNLOAD
Author : Li Deng
language : en
Publisher:
Release Date : 2014

Deep Learning written by Li Deng and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Machine learning categories.


Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks



Deep Learning


Deep Learning
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher: MIT Press
Release Date : 2019-09-10

Deep Learning written by John D. Kelleher and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-10 with Computers categories.


An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.



Deep Learning


Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10

Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.


An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.



Deep Learning With Pytorch


Deep Learning With Pytorch
DOWNLOAD
Author : Luca Pietro Giovanni Antiga
language : en
Publisher: Simon and Schuster
Release Date : 2020-07-01

Deep Learning With Pytorch written by Luca Pietro Giovanni Antiga and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-01 with Computers categories.


“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production



Machine Learning A Journey To Deep Learning With Exercises And Answers


Machine Learning A Journey To Deep Learning With Exercises And Answers
DOWNLOAD
Author : Andreas Miroslaus Wichert
language : en
Publisher: World Scientific
Release Date : 2021-01-26

Machine Learning A Journey To Deep Learning With Exercises And Answers written by Andreas Miroslaus Wichert and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-26 with Computers categories.


This unique compendium discusses some core ideas for the development and implementation of machine learning from three different perspectives — the statistical perspective, the artificial neural network perspective and the deep learning methodology.The useful reference text represents a solid foundation in machine learning and should prepare readers to apply and understand machine learning algorithms as well as to invent new machine learning methods. It tells a story outgoing from a perceptron to deep learning highlighted with concrete examples, including exercises and answers for the students.Related Link(s)



The Perceptron


The Perceptron
DOWNLOAD
Author : Frank Rosenblatt
language : en
Publisher:
Release Date : 1958

The Perceptron written by Frank Rosenblatt and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1958 with Artificial intelligence categories.




Deep Learning Technologies For The Sustainable Development Goals


Deep Learning Technologies For The Sustainable Development Goals
DOWNLOAD
Author : Virender Kadyan
language : en
Publisher: Springer Nature
Release Date : 2023-02-01

Deep Learning Technologies For The Sustainable Development Goals written by Virender Kadyan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-01 with Technology & Engineering categories.


This book provides insights into deep learning techniques that impact the implementation strategies toward achieving the Sustainable Development Goals (SDGs) laid down by the United Nations for its 2030 agenda, elaborating on the promises, limits, and the new challenges. It also covers the challenges, hurdles, and opportunities in various applications of deep learning for the SDGs. A comprehensive survey on the major applications and research, based on deep learning techniques focused on SDGs through speech and image processing, IoT, security, AR-VR, formal methods, and blockchain, is a feature of this book. In particular, there is a need to extend research into deep learning and its broader application to many sectors and to assess its impact on achieving the SDGs. The chapters in this book help in finding the use of deep learning across all sections of SDGs. The rapid development of deep learning needs to be supported by the organizational insight and oversight necessary for AI-based technologies in general; hence, this book presents and discusses the implications of how deep learning enables the delivery agenda for sustainable development.