[PDF] The Geometry Of Higher Order Lagrange Spaces - eBooks Review

The Geometry Of Higher Order Lagrange Spaces


The Geometry Of Higher Order Lagrange Spaces
DOWNLOAD

Download The Geometry Of Higher Order Lagrange Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Geometry Of Higher Order Lagrange Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The Geometry Of Higher Order Lagrange Spaces


The Geometry Of Higher Order Lagrange Spaces
DOWNLOAD
Author : R. Miron
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11

The Geometry Of Higher Order Lagrange Spaces written by R. Miron and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.


This monograph is devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations. It presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1. A geometrical study of the notion of the higher-order Lagrange space is conducted, and the old problem of prolongation of Riemannian spaces to k-osculator manifolds is solved. Also, the geometrical ground for variational calculus on the integral of actions involving higher-order Lagrangians is dealt with. Applications to higher-order analytical mechanics and theoretical physics are included as well. Audience: This volume will be of interest to scientists whose work involves differential geometry, mechanics of particles and systems, calculus of variation and optimal control, optimization, optics, electromagnetic theory, and biology.



The Geometry Of Higher Order Hamilton Spaces


The Geometry Of Higher Order Hamilton Spaces
DOWNLOAD
Author : R. Miron
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

The Geometry Of Higher Order Hamilton Spaces written by R. Miron and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This book is the first to present an overview of higher-order Hamilton geometry with applications to higher-order Hamiltonian mechanics. It is a direct continuation of the book The Geometry of Hamilton and Lagrange Spaces, (Kluwer Academic Publishers, 2001). It contains the general theory of higher order Hamilton spaces H(k)n, k>=1, semisprays, the canonical nonlinear connection, the N-linear metrical connection and their structure equations, and the Riemannian almost contact metrical model of these spaces. In addition, the volume also describes new developments such as variational principles for higher order Hamiltonians; Hamilton-Jacobi equations; higher order energies and law of conservation; Noether symmetries; Hamilton subspaces of order k and their fundamental equations. The duality, via Legendre transformation, between Hamilton spaces of order k and Lagrange spaces of the same order is pointed out. Also, the geometry of Cartan spaces of order k =1 is investigated in detail. This theory is useful in the construction of geometrical models in theoretical physics, mechanics, dynamical systems, optimal control, biology, economy etc.



The Geometry Of Hamilton And Lagrange Spaces


The Geometry Of Hamilton And Lagrange Spaces
DOWNLOAD
Author : R. Miron
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-11

The Geometry Of Hamilton And Lagrange Spaces written by R. Miron and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-11 with Mathematics categories.


The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in [76],[96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published [10], [18], [112], [113],... A large area of applicability of this geometry is suggested by the connections to Biology, Mechanics, and Physics and also by its general setting as a generalization of Finsler and Riemannian geometries. The concept of Hamilton space, introduced in [105], [101] was intensively studied in [63], [66], [97],... and it has been successful, as a geometric theory of the Ham- tonian function the fundamental entity in Mechanics and Physics. The classical Legendre’s duality makes possible a natural connection between Lagrange and - miltonspaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagrange spaces. Following this duality Cartan spaces introduced and studied in [98], [99],..., are, roughly speaking, the Legendre duals of certain Finsler spaces [98], [66], [67]. The above arguments make this monograph a continuation of [106], [113], emphasizing the Hamilton geometry.



The Geometry Of Higher Order Lagrange Spaces


The Geometry Of Higher Order Lagrange Spaces
DOWNLOAD
Author : R. Miron
language : en
Publisher: Springer Science & Business Media
Release Date : 1997-01-31

The Geometry Of Higher Order Lagrange Spaces written by R. Miron and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-01-31 with Mathematics categories.


This monograph is devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations. It presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1. A geometrical study of the notion of the higher-order Lagrange space is conducted, and the old problem of prolongation of Riemannian spaces to k-osculator manifolds is solved. Also, the geometrical ground for variational calculus on the integral of actions involving higher-order Lagrangians is dealt with. Applications to higher-order analytical mechanics and theoretical physics are included as well. Audience: This volume will be of interest to scientists whose work involves differential geometry, mechanics of particles and systems, calculus of variation and optimal control, optimization, optics, electromagnetic theory, and biology.



The Geometry Of Lagrange Spaces Theory And Applications


The Geometry Of Lagrange Spaces Theory And Applications
DOWNLOAD
Author : R. Miron
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

The Geometry Of Lagrange Spaces Theory And Applications written by R. Miron and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.


Differential-geometric methods are gaining increasing importance in the understanding of a wide range of fundamental natural phenomena. Very often, the starting point for such studies is a variational problem formulated for a convenient Lagrangian. From a formal point of view, a Lagrangian is a smooth real function defined on the total space of the tangent bundle to a manifold satisfying some regularity conditions. The main purpose of this book is to present: (a) an extensive discussion of the geometry of the total space of a vector bundle; (b) a detailed exposition of Lagrange geometry; and (c) a description of the most important applications. New methods are described for construction geometrical models for applications. The various chapters consider topics such as fibre and vector bundles, the Einstein equations, generalized Einstein--Yang--Mills equations, the geometry of the total space of a tangent bundle, Finsler and Lagrange spaces, relativistic geometrical optics, and the geometry of time-dependent Lagrangians. Prerequisites for using the book are a good foundation in general manifold theory and a general background in geometrical models in physics. For mathematical physicists and applied mathematicians interested in the theory and applications of differential-geometric methods.



Finsler And Lagrange Geometries


Finsler And Lagrange Geometries
DOWNLOAD
Author : Mihai Anastasiei
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29

Finsler And Lagrange Geometries written by Mihai Anastasiei and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Science categories.


In the last decade several international conferences on Finsler, Lagrange and Hamilton geometries were organized in Bra§ov, Romania (1994), Seattle, USA (1995), Edmonton, Canada (1998), besides the Seminars that periodically are held in Japan and Romania. All these meetings produced important progress in the field and brought forth the appearance of some reference volumes. Along this line, a new International Conference on Finsler and Lagrange Geometry took place August 26-31,2001 at the "Al.I.Cuza" University in Ia§i, Romania. This Conference was organized in the framework of a Memorandum of Un derstanding (1994-2004) between the "Al.I.Cuza" University in Ia§i, Romania and the University of Alberta in Edmonton, Canada. It was especially dedicated to Prof. Dr. Peter Louis Antonelli, the liaison officer in the Memorandum, an untired promoter of Finsler, Lagrange and Hamilton geometries, very close to the Romanian School of Geometry led by Prof. Dr. Radu Miron. The dedica tion wished to mark also the 60th birthday of Prof. Dr. Peter Louis Antonelli. With this occasion a Diploma was given to Professor Dr. Peter Louis Antonelli conferring the title of Honorary Professor granted to him by the Senate of the oldest Romanian University (140 years), the "Al.I.Cuza" University, Ia§i, Roma nia. There were almost fifty participants from Egypt, Greece, Hungary, Japan, Romania, USA. There were scheduled 45 minutes lectures as well as short communications.



New Developments In Differential Geometry


New Developments In Differential Geometry
DOWNLOAD
Author : L. Tamássy
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

New Developments In Differential Geometry written by L. Tamássy and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Proceedings of the Colloquium on Differential Geometry, Debrecen, Hungary, July 26-30, 1994



Finslerian Geometries


Finslerian Geometries
DOWNLOAD
Author : P.L. Antonelli
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Finslerian Geometries written by P.L. Antonelli and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


The International Conference on Finsler and Lagrange Geometry and its Applications: A Meeting of Minds, took place August 13-20, 1998 at the University of Alberta in Edmonton, Canada. The main objective of this meeting was to help acquaint North American geometers with the extensive modern literature on Finsler geometry and Lagrange geometry of the Japanese and European schools, each with its own venerable history, on the one hand, and to communicate recent advances in stochastic theory and Hodge theory for Finsler manifolds by the younger North American school, on the other. The intent was to bring together practitioners of these schools of thought in a Canadian venue where there would be ample opportunity to exchange information and have cordial personal interactions. The present set of refereed papers begins ·with the Pedagogical Sec tion I, where introductory and brief survey articles are presented, one from the Japanese School and two from the European School (Romania and Hungary). These have been prepared for non-experts with the intent of explaining basic points of view. The Section III is the main body of work. It is arranged in alphabetical order, by author. Section II gives a brief account of each of these contribu tions with a short reference list at the end. More extensive references are given in the individual articles.



Mathematical And Statistical Applications In Life Sciences And Engineering


Mathematical And Statistical Applications In Life Sciences And Engineering
DOWNLOAD
Author : Avishek Adhikari
language : en
Publisher: Springer
Release Date : 2017-12-06

Mathematical And Statistical Applications In Life Sciences And Engineering written by Avishek Adhikari and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-06 with Mathematics categories.


The book includes articles from eminent international scientists discussing a wide spectrum of topics of current importance in mathematics and statistics and their applications. It presents state-of-the-art material along with a clear and detailed review of the relevant topics and issues concerned. The topics discussed include message transmission, colouring problem, control of stochastic structures and information dynamics, image denoising, life testing and reliability, survival and frailty models, analysis of drought periods, prediction of genomic profiles, competing risks, environmental applications and chronic disease control. It is a valuable resource for researchers and practitioners in the relevant areas of mathematics and statistics.



The Geometry Of Ordinary Variational Equations


The Geometry Of Ordinary Variational Equations
DOWNLOAD
Author : Olga Krupkova
language : en
Publisher: Springer
Release Date : 2006-11-14

The Geometry Of Ordinary Variational Equations written by Olga Krupkova and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.


The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.