[PDF] The Geometry Of The Group Of Symplectic Diffeomorphisms - eBooks Review

The Geometry Of The Group Of Symplectic Diffeomorphisms


The Geometry Of The Group Of Symplectic Diffeomorphisms
DOWNLOAD

Download The Geometry Of The Group Of Symplectic Diffeomorphisms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Geometry Of The Group Of Symplectic Diffeomorphisms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The Geometry Of The Group Of Symplectic Diffeomorphism


The Geometry Of The Group Of Symplectic Diffeomorphism
DOWNLOAD
Author : Leonid Polterovich
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06

The Geometry Of The Group Of Symplectic Diffeomorphism written by Leonid Polterovich and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


The group of Hamiltonian diffeomorphisms Ham(M, 0) of a symplectic mani fold (M, 0) plays a fundamental role both in geometry and classical mechanics. For a geometer, at least under some assumptions on the manifold M, this is just the connected component of the identity in the group of all symplectic diffeomorphisms. From the viewpoint of mechanics, Ham(M,O) is the group of all admissible motions. What is the minimal amount of energy required in order to generate a given Hamiltonian diffeomorphism I? An attempt to formalize and answer this natural question has led H. Hofer [HI] (1990) to a remarkable discovery. It turns out that the solution of this variational problem can be interpreted as a geometric quantity, namely as the distance between I and the identity transformation. Moreover this distance is associated to a canonical biinvariant metric on Ham(M, 0). Since Hofer's work this new ge ometry has been intensively studied in the framework of modern symplectic topology. In the present book I will describe some of these developments. Hofer's geometry enables us to study various notions and problems which come from the familiar finite dimensional geometry in the context of the group of Hamiltonian diffeomorphisms. They turn out to be very different from the usual circle of problems considered in symplectic topology and thus extend significantly our vision of the symplectic world.



The Geometry Of The Group Of Symplectic Diffeomorphisms


The Geometry Of The Group Of Symplectic Diffeomorphisms
DOWNLOAD
Author : Leonid Polterovich
language : en
Publisher: Springer
Release Date : 2001

The Geometry Of The Group Of Symplectic Diffeomorphisms written by Leonid Polterovich and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Diffeomorphisms categories.


The group of symplectic diffeomorphisms of a symplectic manifold plays a fundamental role both in geometry and classical mechanics. What is the minimal amount of energy required in order to generate a given mechanical motion? This variational problem admits an interpretation in terms of a remarkable geometry on the group discovered by Hofer in 1990. Hofer's geometry serves as a source of interesting problems and gives rise to new methods and notions which extend significantly our vision of the symplectic world. In the past decade this new geometry has been intensively studied in the framework of symplectic topology with the use of modern techniques such as Gromov's theory of pseudo-holomorphic curves, Floer homology and Guillemin-Sternberg-Lerman theory of symplectic connections. Furthermore, it opens up the intriguing prospect of using an alternative geometric intuition in dynamics. The book provides an essentially self-contained introduction into these developments and includes recent results on diameter, geodesics and growth of one-parameter subgroups in Hofer's geometry, as well as applications to dynamics and ergodic theory. It is addressed to researchers and students from the graduate level onwards.



Lectures On Symplectic Geometry


Lectures On Symplectic Geometry
DOWNLOAD
Author : Ana Cannas da Silva
language : en
Publisher: Springer
Release Date : 2004-10-27

Lectures On Symplectic Geometry written by Ana Cannas da Silva and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-10-27 with Mathematics categories.


The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.



The Breadth Of Symplectic And Poisson Geometry


The Breadth Of Symplectic And Poisson Geometry
DOWNLOAD
Author : Jerrold E. Marsden
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-07-03

The Breadth Of Symplectic And Poisson Geometry written by Jerrold E. Marsden and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-03 with Mathematics categories.


* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics



Group Actions In Ergodic Theory Geometry And Topology


Group Actions In Ergodic Theory Geometry And Topology
DOWNLOAD
Author : Robert J. Zimmer
language : en
Publisher: University of Chicago Press
Release Date : 2019-12-23

Group Actions In Ergodic Theory Geometry And Topology written by Robert J. Zimmer and has been published by University of Chicago Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-23 with Mathematics categories.


Robert J. Zimmer is best known in mathematics for the highly influential conjectures and program that bear his name. Group Actions in Ergodic Theory, Geometry, and Topology: Selected Papers brings together some of the most significant writings by Zimmer, which lay out his program and contextualize his work over the course of his career. Zimmer’s body of work is remarkable in that it involves methods from a variety of mathematical disciplines, such as Lie theory, differential geometry, ergodic theory and dynamical systems, arithmetic groups, and topology, and at the same time offers a unifying perspective. After arriving at the University of Chicago in 1977, Zimmer extended his earlier research on ergodic group actions to prove his cocycle superrigidity theorem which proved to be a pivotal point in articulating and developing his program. Zimmer’s ideas opened the door to many others, and they continue to be actively employed in many domains related to group actions in ergodic theory, geometry, and topology. In addition to the selected papers themselves, this volume opens with a foreword by David Fisher, Alexander Lubotzky, and Gregory Margulis, as well as a substantial introductory essay by Zimmer recounting the course of his career in mathematics. The volume closes with an afterword by Fisher on the most recent developments around the Zimmer program.



Morse Theoretic Methods In Nonlinear Analysis And In Symplectic Topology


Morse Theoretic Methods In Nonlinear Analysis And In Symplectic Topology
DOWNLOAD
Author : Paul Biran
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-02-12

Morse Theoretic Methods In Nonlinear Analysis And In Symplectic Topology written by Paul Biran and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-12 with Mathematics categories.


The papers collected in this volume are contributions to the 43rd session of the Seminaire ́ de mathematiques ́ superieures ́ (SMS) on “Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology.” This session took place at the Universite ́ de Montreal ́ in July 2004 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together young researchers from various parts of the world and to present to them some of the most signi cant recent advances in these areas. More than 77 mathematicians from 17 countries followed the 12 series of lectures and participated in the lively exchange of ideas. The lectures covered an ample spectrum of subjects which are re ected in the present volume: Morse theory and related techniques in in nite dim- sional spaces, Floer theory and its recent extensions and generalizations, Morse and Floer theory in relation to string topology, generating functions, structure of the group of Hamiltonian di?eomorphisms and related dynamical problems, applications to robotics and many others. We thank all our main speakers for their stimulating lectures and all p- ticipants for creating a friendly atmosphere during the meeting. We also thank Ms. Diane Belanger ́ , our administrative assistant, for her help with the organi- tion and Mr. Andre ́ Montpetit, our technical editor, for his help in the preparation of the volume.



Symplectic Topology And Measure Preserving Dynamical Systems


Symplectic Topology And Measure Preserving Dynamical Systems
DOWNLOAD
Author : Albert Fathi
language : en
Publisher: American Mathematical Soc.
Release Date : 2010-04-09

Symplectic Topology And Measure Preserving Dynamical Systems written by Albert Fathi and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-09 with Mathematics categories.


The papers in this volume were presented at the AMS-IMS-SIAM Joint Summer Research Conference on Symplectic Topology and Measure Preserving Dynamical Systems held in Snowbird, Utah in July 2007. The aim of the conference was to bring together specialists of symplectic topology and of measure preserving dynamics to try to connect these two subjects. One of the motivating conjectures at the interface of these two fields is the question of whether the group of area preserving homeomorphisms of the 2-disc is or is not simple. For diffeomorphisms it was known that the kernel of the Calabi invariant is a normal proper subgroup, so the group of area preserving diffeomorphisms is not simple. Most articles are related to understanding these and related questions in the framework of modern symplectic topology.



Geometry Rigidity And Group Actions


Geometry Rigidity And Group Actions
DOWNLOAD
Author : Robert J. Zimmer
language : en
Publisher: University of Chicago Press
Release Date : 2011-04-15

Geometry Rigidity And Group Actions written by Robert J. Zimmer and has been published by University of Chicago Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-04-15 with Mathematics categories.


The study of group actions is more than 100 years old but remains a widely studied topic in a variety of mathematic fields. A central development in the last 50 years is the phenomenon of rigidity, whereby one can classify actions of certain groups. This book looks at rigidity.



Spectral Invariants With Bulk Quasi Morphisms And Lagrangian Floer Theory


Spectral Invariants With Bulk Quasi Morphisms And Lagrangian Floer Theory
DOWNLOAD
Author : Kenji Fukaya
language : en
Publisher: American Mathematical Soc.
Release Date : 2019-09-05

Spectral Invariants With Bulk Quasi Morphisms And Lagrangian Floer Theory written by Kenji Fukaya and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-05 with Mathematics categories.


In this paper the authors first develop various enhancements of the theory of spectral invariants of Hamiltonian Floer homology and of Entov-Polterovich theory of spectral symplectic quasi-states and quasi-morphisms by incorporating bulk deformations, i.e., deformations by ambient cycles of symplectic manifolds, of the Floer homology and quantum cohomology. Essentially the same kind of construction is independently carried out by Usher in a slightly less general context. Then the authors explore various applications of these enhancements to the symplectic topology, especially new construction of symplectic quasi-states, quasi-morphisms and new Lagrangian intersection results on toric and non-toric manifolds. The most novel part of this paper is its use of open-closed Gromov-Witten-Floer theory and its variant involving closed orbits of periodic Hamiltonian system to connect spectral invariants (with bulk deformation), symplectic quasi-states, quasi-morphism to the Lagrangian Floer theory (with bulk deformation). The authors use this open-closed Gromov-Witten-Floer theory to produce new examples. Using the calculation of Lagrangian Floer cohomology with bulk, they produce examples of compact symplectic manifolds which admits uncountably many independent quasi-morphisms . They also obtain a new intersection result for the Lagrangian submanifold in .



Dynamics Ergodic Theory And Geometry


Dynamics Ergodic Theory And Geometry
DOWNLOAD
Author : Boris Hasselblatt
language : en
Publisher: Cambridge University Press
Release Date : 2007-09-24

Dynamics Ergodic Theory And Geometry written by Boris Hasselblatt and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-24 with Mathematics categories.


Based on the subjects from the Clay Mathematics Institute/Mathematical Sciences Research Institute Workshop titled 'Recent Progress in Dynamics' in September and October 2004, this volume contains surveys and research articles by leading experts in several areas of dynamical systems that have experienced substantial progress. One of the major surveys is on symplectic geometry, which is closely related to classical mechanics and an exciting addition to modern geometry. The survey on local rigidity of group actions gives a broad and up-to-date account of another flourishing subject. Other papers cover hyperbolic, parabolic, and symbolic dynamics as well as ergodic theory. Students and researchers in dynamical systems, geometry, and related areas will find this book fascinating. The book also includes a fifty-page commented problem list that takes the reader beyond the areas covered by the surveys, to inspire and guide further research.