[PDF] The Homotopy Theory Of 1 Categories - eBooks Review

The Homotopy Theory Of 1 Categories


The Homotopy Theory Of 1 Categories
DOWNLOAD

Download The Homotopy Theory Of 1 Categories PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Homotopy Theory Of 1 Categories book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



From Categories To Homotopy Theory


From Categories To Homotopy Theory
DOWNLOAD
Author : Birgit Richter
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-16

From Categories To Homotopy Theory written by Birgit Richter and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-16 with Mathematics categories.


Bridge the gap between category theory and its applications in homotopy theory with this guide for graduate students and researchers.



Categorical Homotopy Theory


Categorical Homotopy Theory
DOWNLOAD
Author : Emily Riehl
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-26

Categorical Homotopy Theory written by Emily Riehl and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-26 with Mathematics categories.


This categorical perspective on homotopy theory helps consolidate and simplify one's understanding of derived functors, homotopy limits and colimits, and model categories, among others.



The Homotopy Theory Of 1 Categories


The Homotopy Theory Of 1 Categories
DOWNLOAD
Author : Julia E. Bergner
language : en
Publisher: Cambridge University Press
Release Date : 2018-03-15

The Homotopy Theory Of 1 Categories written by Julia E. Bergner and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-15 with Mathematics categories.


An introductory treatment to the homotopy theory of homotopical categories, presenting several models and comparisons between them.



Homotopy Type Theory Univalent Foundations Of Mathematics


Homotopy Type Theory Univalent Foundations Of Mathematics
DOWNLOAD
Author :
language : en
Publisher: Univalent Foundations
Release Date :

Homotopy Type Theory Univalent Foundations Of Mathematics written by and has been published by Univalent Foundations this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.




Homotopy Theory Of Higher Categories


Homotopy Theory Of Higher Categories
DOWNLOAD
Author : Carlos Simpson
language : en
Publisher: Cambridge University Press
Release Date : 2011-10-20

Homotopy Theory Of Higher Categories written by Carlos Simpson and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-20 with Mathematics categories.


The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.



Simplicial Homotopy Theory


Simplicial Homotopy Theory
DOWNLOAD
Author : Paul Gregory Goerss
language : en
Publisher: Springer Science & Business Media
Release Date : 1999

Simplicial Homotopy Theory written by Paul Gregory Goerss and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999 with Mathematics categories.


Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed.



Modern Classical Homotopy Theory


Modern Classical Homotopy Theory
DOWNLOAD
Author : Jeffrey Strom
language : en
Publisher: American Mathematical Soc.
Release Date : 2011-10-19

Modern Classical Homotopy Theory written by Jeffrey Strom and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-19 with Mathematics categories.


The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.



Model Categories And Their Localizations


Model Categories And Their Localizations
DOWNLOAD
Author : Philip S. Hirschhorn
language : en
Publisher: American Mathematical Soc.
Release Date : 2003

Model Categories And Their Localizations written by Philip S. Hirschhorn and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


The aim of this book is to explain modern homotopy theory in a manner accessible to graduate students yet structured so that experts can skip over numerous linear developments to quickly reach the topics of their interest. Homotopy theory arises from choosing a class of maps, called weak equivalences, and then passing to the homotopy category by localizing with respect to the weak equivalences, i.e., by creating a new category in which the weak equivalences are isomorphisms. Quillen defined a model category to be a category together with a class of weak equivalences and additional structure useful for describing the homotopy category in terms of the original category. This allows you to make constructions analogous to those used to study the homotopy theory of topological spaces. A model category has a class of maps called weak equivalences plus two other classes of maps, called cofibrations and fibrations. Quillen's axioms ensure that the homotopy category exists and that the cofibrations and fibrations have extension and lifting properties similar to those of cofibration and fibration maps of topological spaces. During the past several decades the language of model categories has become standard in many areas of algebraic topology, and it is increasingly being used in other fields where homotopy theoretic ideas are becoming important, including modern algebraic $K$-theory and algebraic geometry. All these subjects and more are discussed in the book, beginning with the basic definitions and giving complete arguments in order to make the motivations and proofs accessible to the novice. The book is intended for graduate students and research mathematicians working in homotopy theory and related areas.



Abstract Homotopy And Simple Homotopy Theory


Abstract Homotopy And Simple Homotopy Theory
DOWNLOAD
Author : Klaus Heiner Kamps
language : en
Publisher: World Scientific
Release Date : 1997

Abstract Homotopy And Simple Homotopy Theory written by Klaus Heiner Kamps and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.


"This book provides a thorough and well-written guide to abstract homotopy theory. It could well serve as a graduate text in this topic, or could be studied independently by someone with a background in basic algebra, topology, and category theory."



Elements Of Homotopy Theory


Elements Of Homotopy Theory
DOWNLOAD
Author : George W. Whitehead
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Elements Of Homotopy Theory written by George W. Whitehead and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


As the title suggests, this book is concerned with the elementary portion of the subject of homotopy theory. It is assumed that the reader is familiar with the fundamental group and with singular homology theory, including the Universal Coefficient and Kiinneth Theorems. Some acquaintance with manifolds and Poincare duality is desirable, but not essential. Anyone who has taught a course in algebraic topology is familiar with the fact that a formidable amount of technical machinery must be introduced and mastered before the simplest applications can be made. This phenomenon is also observable in the more advanced parts of the subject. I have attempted to short-circuit it by making maximal use of elementary methods. This approach entails a leisurely exposition in which brevity and perhaps elegance are sacrificed in favor of concreteness and ease of application. It is my hope that this approach will make homotopy theory accessible to workers in a wide range of other subjects-subjects in which its impact is beginning to be felt. It is a consequence of this approach that the order of development is to a certain extent historical. Indeed, if the order in which the results presented here does not strictly correspond to that in which they were discovered, it nevertheless does correspond to an order in which they might have been discovered had those of us who were working in the area been a little more perspicacious.