[PDF] The Infinite Dimensional Topology Of Function Spaces - eBooks Review

The Infinite Dimensional Topology Of Function Spaces


The Infinite Dimensional Topology Of Function Spaces
DOWNLOAD

Download The Infinite Dimensional Topology Of Function Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Infinite Dimensional Topology Of Function Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The Infinite Dimensional Topology Of Function Spaces


The Infinite Dimensional Topology Of Function Spaces
DOWNLOAD
Author : J. van Mill
language : en
Publisher: Elsevier
Release Date : 2002-05-24

The Infinite Dimensional Topology Of Function Spaces written by J. van Mill and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-05-24 with Mathematics categories.


In this book we study function spaces of low Borel complexity.Techniques from general topology, infinite-dimensional topology, functional analysis and descriptive set theoryare primarily used for the study of these spaces. The mix ofmethods from several disciplines makes the subjectparticularly interesting. Among other things, a complete and self-contained proof of the Dobrowolski-Marciszewski-Mogilski Theorem that all function spaces of low Borel complexity are topologically homeomorphic, is presented. In order to understand what is going on, a solid background ininfinite-dimensional topology is needed. And for that a fair amount of knowledge of dimension theory as well as ANR theory is needed. The necessary material was partially covered in our previous book `Infinite-dimensional topology, prerequisites and introduction'. A selection of what was done there can be found here as well, but completely revised and at many places expanded with recent results. A `scenic' route has been chosen towards theDobrowolski-Marciszewski-Mogilski Theorem, linking theresults needed for its proof to interesting recent research developments in dimension theory and infinite-dimensional topology. The first five chapters of this book are intended as a text forgraduate courses in topology. For a course in dimension theory, Chapters 2 and 3 and part of Chapter 1 should be covered. For a course in infinite-dimensional topology, Chapters 1, 4 and 5. In Chapter 6, which deals with function spaces, recent research results are discussed. It could also be used for a graduate course in topology but its flavor is more that of a research monograph than of a textbook; it is thereforemore suitable as a text for a research seminar. The bookconsequently has the character of both textbook and a research monograph. In Chapters 1 through 5, unless statedotherwise, all spaces under discussion are separable andmetrizable. In Chapter 6 results for more general classes of spaces are presented. In Appendix A for easy reference and some basic facts that are important in the book have been collected. The book is not intended as a basis for a course in topology; its purpose is to collect knowledge about general topology. The exercises in the book serve three purposes: 1) to test the reader's understanding of the material 2) to supply proofs of statements that are used in the text, but are not proven there3) to provide additional information not covered by the text.Solutions to selected exercises have been included in Appendix B.These exercises are important or difficult.



Descriptive Topology In Selected Topics Of Functional Analysis


Descriptive Topology In Selected Topics Of Functional Analysis
DOWNLOAD
Author : Jerzy Kąkol
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-08-30

Descriptive Topology In Selected Topics Of Functional Analysis written by Jerzy Kąkol and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-30 with Mathematics categories.


"Descriptive Topology in Selected Topics of Functional Analysis" is a collection of recent developments in the field of descriptive topology, specifically focused on the classes of infinite-dimensional topological vector spaces that appear in functional analysis. Such spaces include Fréchet spaces, (LF)-spaces and their duals, and the space of continuous real-valued functions C(X) on a completely regular Hausdorff space X, to name a few. These vector spaces appear in functional analysis in distribution theory, differential equations, complex analysis, and various other analytical settings. This monograph provides new insights into the connections between the topological properties of linear function spaces and their applications in functional analysis.



Functional Analysis And Infinite Dimensional Geometry


Functional Analysis And Infinite Dimensional Geometry
DOWNLOAD
Author : Marián J. Fabian
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-05-25

Functional Analysis And Infinite Dimensional Geometry written by Marián J. Fabian and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-05-25 with Mathematics categories.


This book introduces the reader to the basic principles of functional analysis and to areas of Banach space theory that are close to nonlinear analysis and topology. In the first part, the book develops the classical theory, including weak topologies, locally convex spaces, Schauder bases, and compact operator theory. The presentation is self-contained, including many folklore results, and the proofs are accessible to students with the usual background in real analysis and topology. The second part covers topics in convexity and smoothness, finite representability, variational principles, homeomorphisms, weak compactness and more. Several results are published here for the first time in a monograph. The text can be used in graduate courses or for independent study. It includes a large number of exercises of different levels of difficulty, accompanied by hints. The book is also directed to young researchers in functional analysis and can serve as a reference book.This is an introduction to basic principles of functional analysis and to areas of Banach space theory close to nonlinear analysis and topology. The first part, which develops the classical theory, is self-contained and features a large number of exercises containing many important results. The second part covers selected topics in the theory of Banach spaces related to smoothness and topology. It is intended to be an introduction to and complement of existing books on the subject. This text may be used in graduate courses, for independent study, or as a reference book.



Complex Analysis On Infinite Dimensional Spaces


Complex Analysis On Infinite Dimensional Spaces
DOWNLOAD
Author : Seán Dineen
language : en
Publisher:
Release Date : 1999-07-01

Complex Analysis On Infinite Dimensional Spaces written by Seán Dineen and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-07-01 with categories.




Topology Of Infinite Dimensional Manifolds


Topology Of Infinite Dimensional Manifolds
DOWNLOAD
Author : Katsuro Sakai
language : en
Publisher: Springer Nature
Release Date : 2020-11-21

Topology Of Infinite Dimensional Manifolds written by Katsuro Sakai and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-21 with Mathematics categories.


An infinite-dimensional manifold is a topological manifold modeled on some infinite-dimensional homogeneous space called a model space. In this book, the following spaces are considered model spaces: Hilbert space (or non-separable Hilbert spaces), the Hilbert cube, dense subspaces of Hilbert spaces being universal spaces for absolute Borel spaces, the direct limit of Euclidean spaces, and the direct limit of Hilbert cubes (which is homeomorphic to the dual of a separable infinite-dimensional Banach space with bounded weak-star topology). This book is designed for graduate students to acquire knowledge of fundamental results on infinite-dimensional manifolds and their characterizations. To read and understand this book, some background is required even for senior graduate students in topology, but that background knowledge is minimized and is listed in the first chapter so that references can easily be found. Almost all necessary background information is found in Geometric Aspects of General Topology, the author's first book. Many kinds of hyperspaces and function spaces are investigated in various branches of mathematics, which are mostly infinite-dimensional. Among them, many examples of infinite-dimensional manifolds have been found. For researchers studying such objects, this book will be very helpful. As outstanding applications of Hilbert cube manifolds, the book contains proofs of the topological invariance of Whitehead torsion and Borsuk’s conjecture on the homotopy type of compact ANRs. This is also the first book that presents combinatorial ∞-manifolds, the infinite-dimensional version of combinatorial n-manifolds, and proofs of two remarkable results, that is, any triangulation of each manifold modeled on the direct limit of Euclidean spaces is a combinatorial ∞-manifold and the Hauptvermutung for them is true.



Topological Vector Spaces And Their Applications


Topological Vector Spaces And Their Applications
DOWNLOAD
Author : V.I. Bogachev
language : en
Publisher: Springer
Release Date : 2017-05-16

Topological Vector Spaces And Their Applications written by V.I. Bogachev and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-16 with Mathematics categories.


This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.



A Cp Theory Problem Book


A Cp Theory Problem Book
DOWNLOAD
Author : Vladimir V. Tkachuk
language : en
Publisher: Springer
Release Date : 2014-06-24

A Cp Theory Problem Book written by Vladimir V. Tkachuk and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-24 with Mathematics categories.


This work is a continuation of the first volume published by Springer in 2011, entitled "A Cp-Theory Problem Book: Topological and Function Spaces." The first volume provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. This present volume covers a wide variety of topics in Cp-theory and general topology at the professional level bringing the reader to the frontiers of modern research. The volume contains 500 problems and exercises with complete solutions. It can also be used as an introduction to advanced set theory and descriptive set theory. The book presents diverse topics of the theory of function spaces with the topology of pointwise convergence, or Cp-theory which exists at the intersection of topological algebra, functional analysis and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from these areas of research. Moreover, this book gives a reasonably complete coverage of Cp-theory through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research.



A Comprehensive Textbook On Metric Spaces


A Comprehensive Textbook On Metric Spaces
DOWNLOAD
Author : Surinder Pal Singh Kainth
language : en
Publisher: Springer Nature
Release Date : 2023-10-30

A Comprehensive Textbook On Metric Spaces written by Surinder Pal Singh Kainth and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-30 with Mathematics categories.


This textbook provides a comprehensive course in metric spaces. Presenting a smooth takeoff from basic real analysis to metric spaces, every chapter of the book presents a single concept, which is further unfolded and elaborated through related sections and subsections. Apart from a unique new presentation and being a comprehensive textbook on metric spaces, it contains some special concepts and new proofs of old results, which are not available in any other book on metric spaces. It has individual chapters on homeomorphisms and the Cantor set. This book is almost self-contained and has an abundance of examples, exercises, references and remarks about the history of basic notions and results. Every chapter of this book includes brief hints and solutions to selected exercises. It is targeted to serve as a textbook for advanced undergraduate and beginning graduate students of mathematics.



Recent Progress In General Topology Ii


Recent Progress In General Topology Ii
DOWNLOAD
Author : M. Husek
language : en
Publisher: Elsevier
Release Date : 2002-11-13

Recent Progress In General Topology Ii written by M. Husek and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-11-13 with Mathematics categories.


The book presents surveys describing recent developments in most of the primary subfields ofGeneral Topology and its applications to Algebra and Analysis during the last decade. It follows freelythe previous edition (North Holland, 1992), Open Problems in Topology (North Holland, 1990) and Handbook of Set-Theoretic Topology (North Holland, 1984). The book was prepared inconnection with the Prague Topological Symposium, held in 2001. During the last 10 years the focusin General Topology changed and therefore the selection of topics differs slightly from thosechosen in 1992. The following areas experienced significant developments: Topological Groups, Function Spaces, Dimension Theory, Hyperspaces, Selections, Geometric Topology (includingInfinite-Dimensional Topology and the Geometry of Banach Spaces). Of course, not every important topic could be included in this book. Except surveys, the book contains several historical essays written by such eminent topologists as:R.D. Anderson, W.W. Comfort, M. Henriksen, S. Mardeŝić, J. Nagata, M.E. Rudin, J.M. Smirnov (several reminiscences of L. Vietoris are added). In addition to extensive author and subject indexes, a list of all problems and questions posed in this book are added. List of all authors of surveys: A. Arhangel'skii, J. Baker and K. Kunen, H. Bennett and D. Lutzer, J. Dijkstra and J. van Mill, A. Dow, E. Glasner, G. Godefroy, G. Gruenhage, N. Hindman and D. Strauss, L. Hola and J. Pelant, K. Kawamura, H.-P. Kuenzi, W. Marciszewski, K. Martin and M. Mislove and M. Reed, R. Pol and H. Torunczyk, D. Repovs and P. Semenov, D. Shakhmatov, S. Solecki, M. Tkachenko.



Infinite Dimensional Topology


Infinite Dimensional Topology
DOWNLOAD
Author : J. van Mill
language : en
Publisher: Elsevier
Release Date : 1988-12-01

Infinite Dimensional Topology written by J. van Mill and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988-12-01 with Mathematics categories.


The first part of this book is a text for graduate courses in topology. In chapters 1 - 5, part of the basic material of plane topology, combinatorial topology, dimension theory and ANR theory is presented. For a student who will go on in geometric or algebraic topology this material is a prerequisite for later work. Chapter 6 is an introduction to infinite-dimensional topology; it uses for the most part geometric methods, and gets to spectacular results fairly quickly. The second part of this book, chapters 7 & 8, is part of geometric topology and is meant for the more advanced mathematician interested in manifolds. The text is self-contained for readers with a modest knowledge of general topology and linear algebra; the necessary background material is collected in chapter 1, or developed as needed.One can look upon this book as a complete and self-contained proof of Toruńczyk's Hilbert cube manifold characterization theorem: a compact ANR X is a manifold modeled on the Hilbert cube if and only if X satisfies the disjoint-cells property. In the process of proving this result several interesting and useful detours are made.