[PDF] The Lifted Root Number Conjecture And Iwasawa Theory - eBooks Review

The Lifted Root Number Conjecture And Iwasawa Theory


The Lifted Root Number Conjecture And Iwasawa Theory
DOWNLOAD

Download The Lifted Root Number Conjecture And Iwasawa Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Lifted Root Number Conjecture And Iwasawa Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The Lifted Root Number Conjecture And Iwasawa Theory


The Lifted Root Number Conjecture And Iwasawa Theory
DOWNLOAD
Author : Jürgen Ritter
language : en
Publisher: American Mathematical Soc.
Release Date : 2002

The Lifted Root Number Conjecture And Iwasawa Theory written by Jürgen Ritter and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.


This paper concerns the relation between the Lifted Root Number Conjecture, as introduced in [GRW2], and a new equivariant form of Iwasawa theory. A main conjecture of equivariant Iwasawa theory is formulated, and its equivalence to the Lifted Root Number Conjecture is shown subject to the validity of a semi-local version of the Root Number Conjecture, which itself is proved in the case of a tame extension of real abelian fields.



The Lifted Root Number Conjecture And Iwasawa Theory


The Lifted Root Number Conjecture And Iwasawa Theory
DOWNLOAD
Author : Charles Gati
language : en
Publisher:
Release Date : 2014-09-11

The Lifted Root Number Conjecture And Iwasawa Theory written by Charles Gati and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-11 with Class field theory categories.


Introduction The Tripod Restriction, deflation; change of maps, and variance with $S$ Definition of $\mho_S$; $\Omega_\Phi$ as a shadow of $\mho_S$ $\mho_S$ over the maximal order in the case when $G$is abelian Local considerations Towards a representing homomorphism for $\Omega_{\varphi_{\mathcal L}}$ Real cyclotomic extensions tame over $l$ References.



Noncommutative Iwasawa Main Conjectures Over Totally Real Fields


Noncommutative Iwasawa Main Conjectures Over Totally Real Fields
DOWNLOAD
Author : John Coates
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-10-19

Noncommutative Iwasawa Main Conjectures Over Totally Real Fields written by John Coates and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-19 with Mathematics categories.


The algebraic techniques developed by Kakde will almost certainly lead eventually to major progress in the study of congruences between automorphic forms and the main conjectures of non-commutative Iwasawa theory for many motives. Non-commutative Iwasawa theory has emerged dramatically over the last decade, culminating in the recent proof of the non-commutative main conjecture for the Tate motive over a totally real p-adic Lie extension of a number field, independently by Ritter and Weiss on the one hand, and Kakde on the other. The initial ideas for giving a precise formulation of the non-commutative main conjecture were discovered by Venjakob, and were then systematically developed in the subsequent papers by Coates-Fukaya-Kato-Sujatha-Venjakob and Fukaya-Kato. There was also parallel related work in this direction by Burns and Flach on the equivariant Tamagawa number conjecture. Subsequently, Kato discovered an important idea for studying the K_1 groups of non-abelian Iwasawa algebras in terms of the K_1 groups of the abelian quotients of these Iwasawa algebras. Kakde's proof is a beautiful development of these ideas of Kato, combined with an idea of Burns, and essentially reduces the study of the non-abelian main conjectures to abelian ones. The approach of Ritter and Weiss is more classical, and partly inspired by techniques of Frohlich and Taylor. Since many of the ideas in this book should eventually be applicable to other motives, one of its major aims is to provide a self-contained exposition of some of the main general themes underlying these developments. The present volume will be a valuable resource for researchers working in both Iwasawa theory and the theory of automorphic forms.



Arithmetic Of L Functions


Arithmetic Of L Functions
DOWNLOAD
Author : Cristian Popescu
language : en
Publisher: American Mathematical Soc.
Release Date :

Arithmetic Of L Functions written by Cristian Popescu and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.




Lie Algebras Graded By The Root Systems Bc R R Geq 2


Lie Algebras Graded By The Root Systems Bc R R Geq 2
DOWNLOAD
Author : Bruce Normansell Allison
language : en
Publisher: American Mathematical Soc.
Release Date : 2002

Lie Algebras Graded By The Root Systems Bc R R Geq 2 written by Bruce Normansell Allison and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.


Introduction The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra, $r\ge 3$ (excluding type $\mathrm{D}_3)$ Models for $\mathrm{BC}_r$-graded Lie algebras, $r\ge 3$ (excluding type $\mathrm{D}_3)$ The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Central extensions, derivations and invariant forms Models of $\mathrm{BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Appendix: Peirce decompositions in structurable algebras References.



Stark S Conjectures Recent Work And New Directions


Stark S Conjectures Recent Work And New Directions
DOWNLOAD
Author : David Burns
language : en
Publisher: American Mathematical Soc.
Release Date : 2004

Stark S Conjectures Recent Work And New Directions written by David Burns and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with categories.




Homotopy Theory Of The Suspensions Of The Projective Plane


Homotopy Theory Of The Suspensions Of The Projective Plane
DOWNLOAD
Author : Jie Wu
language : en
Publisher: American Mathematical Soc.
Release Date : 2003

Homotopy Theory Of The Suspensions Of The Projective Plane written by Jie Wu and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


Investigates the homotopy theory of the suspensions of the real projective plane. This book computes the homotopy groups up to certain range. It also studies the decompositions of the self smashes and the loop spaces with some applications to the Stiefel manifolds.



The Connective K Theory Of Finite Groups


The Connective K Theory Of Finite Groups
DOWNLOAD
Author : Robert Ray Bruner
language : en
Publisher: American Mathematical Soc.
Release Date : 2003

The Connective K Theory Of Finite Groups written by Robert Ray Bruner and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


Includes a paper that deals the connective K homology and cohomology of finite groups $G$. This title uses the methods of algebraic geometry to study the ring $ku DEGREES*(BG)$ where $ku$ denotes connective complex K-theory. It describes the variety in terms of the category of abelian $p$-subgroups of $G$ for primes $p$ dividing the group



From Representation Theory To Homotopy Groups


From Representation Theory To Homotopy Groups
DOWNLOAD
Author : Donald M. Davis
language : en
Publisher: American Mathematical Soc.
Release Date : 2002

From Representation Theory To Homotopy Groups written by Donald M. Davis and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.


A formula for the odd-primary v1-periodic homotopy groups of a finite H-space in terms of its K-theory and Adams operations has been obtained by Bousfield. This work applys this theorem to give explicit determinations of the v1-periodic homotopy groups of (E8,5) and (E8,3), thus completing the determination of all odd-primary v1-periodic homotopy groups of all compact simple Lie groups, a project suggested by Mimura in 1989.



Descriptive Set Theory And Definable Forcing


Descriptive Set Theory And Definable Forcing
DOWNLOAD
Author : Jindřich Zapletal
language : en
Publisher: American Mathematical Soc.
Release Date : 2004

Descriptive Set Theory And Definable Forcing written by Jindřich Zapletal and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.


Focuses on the relationship between definable forcing and descriptive set theory; the forcing serves as a tool for proving independence of inequalities between cardinal invariants of the continuum.