[PDF] The Mathematical Basis Of Finite Element Methods With Applications To Partial Differential Equations - eBooks Review

The Mathematical Basis Of Finite Element Methods With Applications To Partial Differential Equations


The Mathematical Basis Of Finite Element Methods With Applications To Partial Differential Equations
DOWNLOAD

Download The Mathematical Basis Of Finite Element Methods With Applications To Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Mathematical Basis Of Finite Element Methods With Applications To Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Numerical Solution Of Partial Differential Equations By The Finite Element Method


Numerical Solution Of Partial Differential Equations By The Finite Element Method
DOWNLOAD
Author : Claes Johnson
language : en
Publisher: Courier Corporation
Release Date : 2012-05-23

Numerical Solution Of Partial Differential Equations By The Finite Element Method written by Claes Johnson and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-23 with Mathematics categories.


An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.



Mathematical And Numerical Methods For Partial Differential Equations


Mathematical And Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : Joël Chaskalovic
language : en
Publisher: Springer
Release Date : 2014-05-16

Mathematical And Numerical Methods For Partial Differential Equations written by Joël Chaskalovic and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-16 with Mathematics categories.


This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.



The Mathematical Foundations Of The Finite Element Method With Applications To Partial Differential Equations


The Mathematical Foundations Of The Finite Element Method With Applications To Partial Differential Equations
DOWNLOAD
Author : A. K. Aziz
language : en
Publisher: Academic Press
Release Date : 2014-05-10

The Mathematical Foundations Of The Finite Element Method With Applications To Partial Differential Equations written by A. K. Aziz and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Technology & Engineering categories.


The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.



Partial Differential Equations And The Finite Element Method


Partial Differential Equations And The Finite Element Method
DOWNLOAD
Author : Pavel Ŝolín
language : en
Publisher: John Wiley & Sons
Release Date : 2005-12-16

Partial Differential Equations And The Finite Element Method written by Pavel Ŝolín and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-16 with Mathematics categories.


A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.



The Mathematical Basis Of Finite Element Methods


The Mathematical Basis Of Finite Element Methods
DOWNLOAD
Author : David Francis Griffiths
language : en
Publisher:
Release Date : 1986

The Mathematical Basis Of Finite Element Methods written by David Francis Griffiths and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986 with categories.




The Finite Element Method Theory Implementation And Applications


The Finite Element Method Theory Implementation And Applications
DOWNLOAD
Author : Mats G. Larson
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-01-13

The Finite Element Method Theory Implementation And Applications written by Mats G. Larson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-13 with Computers categories.


This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​



The Mathematical Basis Of Finite Element Methods With Applications To Partial Differential Equations


The Mathematical Basis Of Finite Element Methods With Applications To Partial Differential Equations
DOWNLOAD
Author : David Francis Griffiths
language : en
Publisher: Oxford University Press, USA
Release Date : 1984

The Mathematical Basis Of Finite Element Methods With Applications To Partial Differential Equations written by David Francis Griffiths and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984 with Mathematics categories.


Combining theoretical insights with practical applications, this stimulating collection provides a state-of-the-art survey of the finite element method, one of the most powerful tools available for the solution of physical problems. Written by leading experts, this volume consider such topics as parabolic Galerkin methods, nonconforming elements, the treatment of singularities in elliptic boundary value problems, and conforming methods for self-adjount elliptic problems. This will be an invaluable basic reference for computational mathematicians and engineers who use finite element methods in academic or industrial research.



Finite Element Methods


Finite Element Methods
DOWNLOAD
Author : Jonathan Whiteley
language : en
Publisher: Springer
Release Date : 2017-01-26

Finite Element Methods written by Jonathan Whiteley and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-26 with Science categories.


This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.



Mathematical Theory Of Subdivision


Mathematical Theory Of Subdivision
DOWNLOAD
Author : Sandeep Kumar
language : en
Publisher: CRC Press
Release Date : 2019-07-09

Mathematical Theory Of Subdivision written by Sandeep Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-09 with Mathematics categories.


This book provides good coverage of the powerful numerical techniques namely, finite element and wavelets, for the solution of partial differential equation to the scientists and engineers with a modest mathematical background. The objective of the book is to provide the necessary mathematical foundation for the advanced level applications of these numerical techniques. The book begins with the description of the steps involved in finite element and wavelets-Galerkin methods. The knowledge of Hilbert and Sobolev spaces is needed to understand the theory of finite element and wavelet-based methods. Therefore, an overview of essential content such as vector spaces, norm, inner product, linear operators, spectral theory, dual space, and distribution theory, etc. with relevant theorems are presented in a coherent and accessible manner. For the graduate students and researchers with diverse educational background, the authors have focused on the applications of numerical techniques which are developed in the last few decades. This includes the wavelet-Galerkin method, lifting scheme, and error estimation technique, etc. Features: • Computer programs in Mathematica/Matlab are incorporated for easy understanding of wavelets. • Presents a range of workout examples for better comprehension of spaces and operators. • Algorithms are presented to facilitate computer programming. • Contains the error estimation techniques necessary for adaptive finite element method. This book is structured to transform in step by step manner the students without any knowledge of finite element, wavelet and functional analysis to the students of strong theoretical understanding who will be ready to take many challenging research problems in this area.



The Finite Element Method For Elliptic Problems


The Finite Element Method For Elliptic Problems
DOWNLOAD
Author : P.G. Ciarlet
language : en
Publisher: Elsevier
Release Date : 1978-01-01

The Finite Element Method For Elliptic Problems written by P.G. Ciarlet and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1978-01-01 with Mathematics categories.


The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.