[PDF] The Mathematics Of Data - eBooks Review

The Mathematics Of Data


The Mathematics Of Data
DOWNLOAD

Download The Mathematics Of Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Mathematics Of Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mathematics Of Data Fusion


Mathematics Of Data Fusion
DOWNLOAD
Author : I.R. Goodman
language : en
Publisher: Springer Science & Business Media
Release Date : 1997-08-31

Mathematics Of Data Fusion written by I.R. Goodman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-08-31 with Mathematics categories.


Data fusion or information fusion are names which have been primarily assigned to military-oriented problems. In military applications, typical data fusion problems are: multisensor, multitarget detection, object identification, tracking, threat assessment, mission assessment and mission planning, among many others. However, it is clear that the basic underlying concepts underlying such fusion procedures can often be used in nonmilitary applications as well. The purpose of this book is twofold: First, to point out present gaps in the way data fusion problems are conceptually treated. Second, to address this issue by exhibiting mathematical tools which treat combination of evidence in the presence of uncertainty in a more systematic and comprehensive way. These techniques are based essentially on two novel ideas relating to probability theory: the newly developed fields of random set theory and conditional and relational event algebra. This volume is intended to be both an update on research progress on data fusion and an introduction to potentially powerful new techniques: fuzzy logic, random set theory, and conditional and relational event algebra. Audience: This volume can be used as a reference book for researchers and practitioners in data fusion or expert systems theory, or for graduate students as text for a research seminar or graduate level course.



Mathematics Of Data Science


Mathematics Of Data Science
DOWNLOAD
Author : Daniela Calvetti
language : en
Publisher: SIAM
Release Date : 2020-11-20

Mathematics Of Data Science written by Daniela Calvetti and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-20 with Mathematics categories.


This textbook provides a solid mathematical basis for understanding popular data science algorithms for clustering and classification and shows that an in-depth understanding of the mathematics powering these algorithms gives insight into the underlying data. It presents a step-by-step derivation of these algorithms, outlining their implementation from scratch in a computationally sound way. Mathematics of Data Science: A Computational Approach to Clustering and Classification proposes different ways of visualizing high-dimensional data to unveil hidden internal structures, and nearly every chapter includes graphical explanations and computed examples using publicly available data sets to highlight similarities and differences among the algorithms. This self-contained book is geared toward advanced undergraduate and beginning graduate students in the mathematical sciences, engineering, and computer science and can be used as the main text in a semester course. Researchers in any application area where data science methods are used will also find the book of interest. No advanced mathematical or statistical background is assumed.



Mathematical Foundations For Data Analysis


Mathematical Foundations For Data Analysis
DOWNLOAD
Author : Jeff M. Phillips
language : en
Publisher: Springer
Release Date : 2021-04-17

Mathematical Foundations For Data Analysis written by Jeff M. Phillips and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-17 with Mathematics categories.


This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.



The Mathematics Of Data


The Mathematics Of Data
DOWNLOAD
Author : Michael W. Mahoney
language : en
Publisher:
Release Date : 2018

The Mathematics Of Data written by Michael W. Mahoney and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with MATHEMATICS categories.


Data science is a highly interdisciplinary field, incorporating ideas from applied mathematics, statistics, probability, and computer science, as well as many other areas. This book gives an introduction to the mathematical methods that form the foundations of machine learning and data science, presented by leading experts in computer science, statistics, and applied mathematics. Although the chapters can be read independently, they are designed to be read together as they lay out algorithmic, statistical, and numerical approaches in diverse but complementary ways. This book can be used both a.



Mathematics For Machine Learning


Mathematics For Machine Learning
DOWNLOAD
Author : Marc Peter Deisenroth
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-23

Mathematics For Machine Learning written by Marc Peter Deisenroth and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-23 with Computers categories.


Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.



Mathematics Of Big Data


Mathematics Of Big Data
DOWNLOAD
Author : Jeremy Kepner
language : en
Publisher: MIT Press
Release Date : 2018-08-07

Mathematics Of Big Data written by Jeremy Kepner and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-07 with Computers categories.


The first book to present the common mathematical foundations of big data analysis across a range of applications and technologies. Today, the volume, velocity, and variety of data are increasing rapidly across a range of fields, including Internet search, healthcare, finance, social media, wireless devices, and cybersecurity. Indeed, these data are growing at a rate beyond our capacity to analyze them. The tools—including spreadsheets, databases, matrices, and graphs—developed to address this challenge all reflect the need to store and operate on data as whole sets rather than as individual elements. This book presents the common mathematical foundations of these data sets that apply across many applications and technologies. Associative arrays unify and simplify data, allowing readers to look past the differences among the various tools and leverage their mathematical similarities in order to solve the hardest big data challenges. The book first introduces the concept of the associative array in practical terms, presents the associative array manipulation system D4M (Dynamic Distributed Dimensional Data Model), and describes the application of associative arrays to graph analysis and machine learning. It provides a mathematically rigorous definition of associative arrays and describes the properties of associative arrays that arise from this definition. Finally, the book shows how concepts of linearity can be extended to encompass associative arrays. Mathematics of Big Data can be used as a textbook or reference by engineers, scientists, mathematicians, computer scientists, and software engineers who analyze big data.



Data Science For Mathematicians


Data Science For Mathematicians
DOWNLOAD
Author : Nathan Carter
language : en
Publisher: CRC Press
Release Date : 2020-09-15

Data Science For Mathematicians written by Nathan Carter and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-15 with Mathematics categories.


Mathematicians have skills that, if deepened in the right ways, would enable them to use data to answer questions important to them and others, and report those answers in compelling ways. Data science combines parts of mathematics, statistics, computer science. Gaining such power and the ability to teach has reinvigorated the careers of mathematicians. This handbook will assist mathematicians to better understand the opportunities presented by data science. As it applies to the curriculum, research, and career opportunities, data science is a fast-growing field. Contributors from both academics and industry present their views on these opportunities and how to advantage them.



Foundations Of Data Science


Foundations Of Data Science
DOWNLOAD
Author : Avrim Blum
language : en
Publisher: Cambridge University Press
Release Date : 2020-01-23

Foundations Of Data Science written by Avrim Blum and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-23 with Computers categories.


Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.



Explorations In The Mathematics Of Data Science


Explorations In The Mathematics Of Data Science
DOWNLOAD
Author : Simon Foucart
language : en
Publisher: Springer Nature
Release Date : 2024-09-12

Explorations In The Mathematics Of Data Science written by Simon Foucart and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-12 with Mathematics categories.


This edited volume reports on the recent activities of the new Center for Approximation and Mathematical Data Analytics (CAMDA) at Texas A&M University. Chapters are based on talks from CAMDA’s inaugural conference – held in May 2023 – and its seminar series, as well as work performed by members of the Center. They showcase the interdisciplinary nature of data science, emphasizing its mathematical and theoretical foundations, especially those rooted in approximation theory.