[PDF] The Poincar Conjecture - eBooks Review

The Poincar Conjecture


The Poincar Conjecture
DOWNLOAD

Download The Poincar Conjecture PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Poincar Conjecture book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The Poincar Conjecture


The Poincar Conjecture
DOWNLOAD
Author : Donal O'Shea
language : en
Publisher: Penguin UK
Release Date : 2008-10-30

The Poincar Conjecture written by Donal O'Shea and has been published by Penguin UK this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-10-30 with Science categories.


The Poincaré Conjecture tells the story behind one of the world’s most confounding mathematical theories. Formulated in 1904 by Henri Poincaré, his Conjecture promised to describe the very shape of the universe, but remained unproved until a huge prize was offered for its solution in 2000. Six years later, an eccentric Russian mathematician had the answer. Here, Donal O’Shea explains the maths behind the Conjecture and its proof, and illuminates the curious personalities surrounding this perplexing conundrum, along the way taking in a grand sweep of scientific history from the ancient Greeks to Christopher Columbus. This is an enthralling tale of human endeavour, intellectual brilliance and the thrill of discovery.



Ricci Flow And The Poincare Conjecture


Ricci Flow And The Poincare Conjecture
DOWNLOAD
Author : John W. Morgan
language : en
Publisher: American Mathematical Soc.
Release Date : 2007

Ricci Flow And The Poincare Conjecture written by John W. Morgan and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.


For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute's seven Millennium Prize Problems. in 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincare Conjecture in the affirmative. This book provides full details of a complete proof of the Poincare Conjecture following Perelman's three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton's work. The second part starts with Perelman's length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation. The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman's third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincare Conjecture and the closely related 3-dimensional spherical space-form conjectu The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincare Conjecture. It forms the heart of the proof via Ricci flow of Thurston's Geometrization Conjecture. Thurston's Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. in addition, the fourth part is a much-expanded version of Perelman's third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. Clay Mathematics Institute Monograph Series The Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).



Poincare S Prize


Poincare S Prize
DOWNLOAD
Author : George G. Szpiro
language : en
Publisher: Penguin
Release Date : 2008-07-29

Poincare S Prize written by George G. Szpiro and has been published by Penguin this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-07-29 with Mathematics categories.


The amazing story of one of the greatest math problems of all time and the reclusive genius who solved it In the tradition of Fermat’s Enigma and Prime Obsession, George Szpiro brings to life the giants of mathematics who struggled to prove a theorem for a century and the mysterious man from St. Petersburg, Grigory Perelman, who fi nally accomplished the impossible. In 1904 Henri Poincaré developed the Poincaré Conjecture, an attempt to understand higher-dimensional space and possibly the shape of the universe. The problem was he couldn’t prove it. A century later it was named a Millennium Prize problem, one of the seven hardest problems we can imagine. Now this holy grail of mathematics has been found. Accessibly interweaving history and math, Szpiro captures the passion, frustration, and excitement of the hunt, and provides a fascinating portrait of a contemporary noble-genius.



The Disc Embedding Theorem


The Disc Embedding Theorem
DOWNLOAD
Author : Stefan Behrens
language : en
Publisher: Oxford University Press
Release Date : 2021

The Disc Embedding Theorem written by Stefan Behrens and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Mathematics categories.


Based on Fields medal winning work of Michael Freedman, this book explores the disc embedding theorem for 4-dimensional manifolds. This theorem underpins virtually all our understanding of topological 4-manifolds. Most famously, this includes the 4-dimensional Poincaré conjecture in the topological category. The Disc Embedding Theorem contains the first thorough and approachable exposition of Freedman's proof of the disc embedding theorem, with many new details. A self-contained account of decomposition space theory, a beautiful but outmoded branch of topology that produces non-differentiable homeomorphisms between manifolds, is provided, as well as a stand-alone interlude that explains the disc embedding theorem's key role in all known homeomorphism classifications of 4-manifolds via surgery theory and the s-cobordism theorem. Additionally, the ramifications of the disc embedding theorem within the study of topological 4-manifolds, for example Frank Quinn's development of fundamental tools like transversality are broadly described.The book is written for mathematicians, within the subfield of topology, specifically interested in the study of 4-dimensional spaces, and includes numerous professionally rendered figures.



The Geometrization Conjecture


The Geometrization Conjecture
DOWNLOAD
Author : John Morgan
language : en
Publisher: American Mathematical Soc.
Release Date : 2014-05-21

The Geometrization Conjecture written by John Morgan and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-21 with Mathematics categories.


This book gives a complete proof of the geometrization conjecture, which describes all compact 3-manifolds in terms of geometric pieces, i.e., 3-manifolds with locally homogeneous metrics of finite volume. The method is to understand the limits as time goes to infinity of Ricci flow with surgery. The first half of the book is devoted to showing that these limits divide naturally along incompressible tori into pieces on which the metric is converging smoothly to hyperbolic metrics and pieces that are locally more and more volume collapsed. The second half of the book is devoted to showing that the latter pieces are themselves geometric. This is established by showing that the Gromov-Hausdorff limits of sequences of more and more locally volume collapsed 3-manifolds are Alexandrov spaces of dimension at most 2 and then classifying these Alexandrov spaces. In the course of proving the geometrization conjecture, the authors provide an overview of the main results about Ricci flows with surgery on 3-dimensional manifolds, introducing the reader to this difficult material. The book also includes an elementary introduction to Gromov-Hausdorff limits and to the basics of the theory of Alexandrov spaces. In addition, a complete picture of the local structure of Alexandrov surfaces is developed. All of these important topics are of independent interest. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).



The Poincare Conjecture


The Poincare Conjecture
DOWNLOAD
Author : James Carlson
language : en
Publisher: American Mathematical Soc.
Release Date : 2014-10-16

The Poincare Conjecture written by James Carlson and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-16 with Mathematics categories.


The conference to celebrate the resolution of the Poincare conjecture, which is one of the Clay Mathematics Institute's seven Millennium Prize Problems, was held at the Institut Henri Poincare in Paris. Several leading mathematicians gave lectures providing an overview of the conjecture--its history, its influence on the development of mathematics, and, finally, its proof. This volume contains papers based on the lectures at that conference. Taken together, they form an extraordinary record of the work that went into the solution of one of the great problems of mathematics.



Poincare S Legacies Part I


Poincare S Legacies Part I
DOWNLOAD
Author : Terence Tao
language : en
Publisher: American Mathematical Soc.
Release Date : 2009

Poincare S Legacies Part I written by Terence Tao and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.


Focuses on ergodic theory, combinatorics, and number theory. This book discusses a variety of topics, ranging from developments in additive prime number theory to expository articles on individual mathematical topics such as the law of large numbers and the Lucas-Lehmer test for Mersenne primes.



The Shape Of A Life


The Shape Of A Life
DOWNLOAD
Author : Shing-Tung Yau
language : en
Publisher: Yale University Press
Release Date : 2019-01-01

The Shape Of A Life written by Shing-Tung Yau and has been published by Yale University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-01 with Biography & Autobiography categories.


A Fields medalist recounts his lifelong transnational effort to uncover the geometric shape--the Calabi-Yau manifold--that may store the hidden dimensions of our universe. Harvard geometer and Fields medalist Shing-Tung Yau has provided a mathematical foundation for string theory, offered new insights into black holes, and mathematically demonstrated the stability of our universe. In this autobiography, Yau reflects on his improbable journey to becoming one of the world's most distinguished mathematicians. Beginning with an impoverished childhood in China and Hong Kong, Yau takes readers through his doctoral studies at Berkeley during the height of the Vietnam War protests, his Fields Medal-winning proof of the Calabi conjecture, his return to China, and his pioneering work in geometric analysis. This new branch of geometry, which Yau built up with his friends and colleagues, has paved the way for solutions to several important and previously intransigent problems. With complicated ideas explained for a broad audience, this book offers readers not only insights into the life of an eminent mathematician, but also an accessible way to understand advanced and highly abstract concepts in mathematics and theoretical physics.