The Role Of Topology In Classical And Quantum Physics


The Role Of Topology In Classical And Quantum Physics
DOWNLOAD

Download The Role Of Topology In Classical And Quantum Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Role Of Topology In Classical And Quantum Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





The Role Of Topology In Classical And Quantum Physics


The Role Of Topology In Classical And Quantum Physics
DOWNLOAD

Author : Giuseppe Morandi
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-09-11

The Role Of Topology In Classical And Quantum Physics written by Giuseppe Morandi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-11 with Science categories.


In solid-state physics especially topological techniques have turned out to be extremely useful for modelling and explaining physical properties of matter. This book illustrates various applications of algebraic topology in classical field theory (non-linear sigma-models) and in quantizationsin multiply connected spaces (anyons). It treats Chern-Simon Lagrangians, Berry's phase, the polarization of light and the fractional quantum Hall effect.



Classical Topology And Quantum States


Classical Topology And Quantum States
DOWNLOAD

Author : A P Balachandran
language : en
Publisher: World Scientific
Release Date : 1991-05-16

Classical Topology And Quantum States written by A P Balachandran and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-05-16 with Science categories.


This book is an introduction to the role of topology in the quantization of classical systems. It is also an introduction to topological solitons with special emphasis on Skyrmions. As regards the first aspect, several issues of current interest are dealt with at a reasonably elementary level. Examples are principal fibre bundles and their role in quantum physics, the possibility of spinorial quantum states in a Lagrangian theory based on tensorial variables, and multiply connected configuration spaces and associated quantum phenomena like the QCD q angle and exotic statistics. The ideas are also illustrated by simple examples such as the spinning particle, the charge-monopole system and strings in 3+1 dimensions. The application of these ideas to quantum gravity is another subject treated at an introductory level. An attempt has been made in this book to introduce the reader to the significance of topology for many distinct physical systems such as spinning particles, the charge- monopole system, strings, Skyrmions, QCD and gravity. The book is an outgrowth of lectures given by the authors at various institutions and conferences. Contents:Part I: Classical Mechanics and Quantum States:The Dirac-Bergmann Theory of ConstraintsNonrelativistic Particles with Fixed SpinMagnetic MonopolesThe Canonical Formalism and QuantizationThe Wess-Zumino Term and the Path SpaceQuantum Symmetries and the Wess-Zumino TermQuantum Theory for Multiply Connected Configuration SpacesPart II: Topological Solitons and Nonlinear Models:Topological Solitons in One and Two DimensionsNonlinear Models as Gauge TheoriesThe Chern-Simons TermPart III: Skyrmions:The Effective Lagrangian for QCDSkyrme Solitons for Two FlavoursPreliminary Discussion of Skyrme's ProposalsBaryon Number and Spin of the SkyrmionMore on the Wess-Zumino TermA Hierarchy of “Spherically Symmetric” AnsätzeSkyrmion PhenomenologyElectroweak SkyrmionsPart IV: Gauge, Gravity and String Theories:Multiply Connected Configuration Spaces in Gauge and Gravity TheoriesGeons and their PropertiesStatistics, Strings and Gravity Readership: Mathematical physicists and physicists interested in topological concepts, soliton and skyrmion theory and foundations of quantum theory. keywords:Skyrmions and Other Solitons;Geons;Magnetic Monopoles;Nonlinear Models;Wess-Zumino Term;Topology and Quantum Theory;Chern-Simons Theory;Fibre Bundles;Constraint Theory and Quantization;Spin and Statistics



Introduction To Topological Quantum Matter Quantum Computation


Introduction To Topological Quantum Matter Quantum Computation
DOWNLOAD

Author : Tudor D. Stanescu
language : en
Publisher: CRC Press
Release Date : 2016-12-19

Introduction To Topological Quantum Matter Quantum Computation written by Tudor D. Stanescu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-19 with Science categories.


What is "topological" about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-known topological insulators and superconductors and emphasizes the deep connections with quantum computation. It addresses key principles behind the classification of topological quantum phases and relevant mathematical concepts and discusses models of interacting and noninteracting topological systems, such as the torric code and the p-wave superconductor. The book also covers the basic properties of anyons, and aspects concerning the realization of topological states in solid state structures and cold atom systems. Quantum computation is also presented using a broad perspective, which includes fundamental aspects of quantum mechanics, such as Bell's theorem, basic concepts in the theory of computation, such as computational models and computational complexity, examples of quantum algorithms, and elements of classical and quantum information theory.



Quantum Topology


Quantum Topology
DOWNLOAD

Author : Louis H. Kauffman
language : en
Publisher: World Scientific
Release Date : 1993

Quantum Topology written by Louis H. Kauffman and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Mathematics categories.


This book constitutes a review volume on the relatively new subject of Quantum Topology. Quantum Topology has its inception in the 1984/1985 discoveries of new invariants of knots and links (Jones, Homfly and Kauffman polynomials). These invariants were rapidly connected with quantum groups and methods in statistical mechanics. This was followed by Edward Witten's introduction of methods of quantum field theory into the subject and the formulation by Witten and Michael Atiyah of the concept of topological quantum field theories.This book is a review volume of on-going research activity. The papers derive from talks given at the Special Session on Knot and Topological Quantum Field Theory of the American Mathematical Society held at Dayton, Ohio in the fall of 1992. The book consists of a self-contained article by Kauffman, entitled Introduction to Quantum Topology and eighteen research articles by participants in the special session.This book should provide a useful source of ideas and results for anyone interested in the interface between topology and quantum field theory.



Geometric And Algebraic Topological Methods In Quantum Mechanics


Geometric And Algebraic Topological Methods In Quantum Mechanics
DOWNLOAD

Author : Luigi Mangiarotti
language : en
Publisher: World Scientific
Release Date : 2005-01-27

Geometric And Algebraic Topological Methods In Quantum Mechanics written by Luigi Mangiarotti and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-01-27 with Science categories.


In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry's geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Geometry is by no means the primary scope of the book, but it underlies many ideas in modern quantum physics and provides the most advanced schemes of quantization.



Topology For Physicists


Topology For Physicists
DOWNLOAD

Author : Albert S. Schwarz
language : en
Publisher: Springer Science & Business Media
Release Date : 1996-07-16

Topology For Physicists written by Albert S. Schwarz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-07-16 with Mathematics categories.


In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa tions of motion (solitons and instantons) allow the physicist to leave the frame work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds.



Quantum Field Theory And Topology


Quantum Field Theory And Topology
DOWNLOAD

Author : Albert S. Schwarz
language : en
Publisher: Springer Science & Business Media
Release Date : 1993-10-21

Quantum Field Theory And Topology written by Albert S. Schwarz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-10-21 with Mathematics categories.


In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.



Applications Of Contact Geometry And Topology In Physics


Applications Of Contact Geometry And Topology In Physics
DOWNLOAD

Author : Arkady L Kholodenko
language : en
Publisher: World Scientific
Release Date : 2013-05-03

Applications Of Contact Geometry And Topology In Physics written by Arkady L Kholodenko and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-03 with Mathematics categories.


Although contact geometry and topology is briefly discussed in V I Arnol'd's book “Mathematical Methods of Classical Mechanics ”(Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges “An Introduction to Contact Topology” (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph “Contact Geometry and Nonlinear Differential Equations” (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau–Lifshitz (L–L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L–L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L–L course some problems/exercises are formulated along the way and, again as in the L–L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L–L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text. Contents:Motivation and BackgroundFrom Ideal Magnetohydrodynamics to String and Knot TheoryAll About and Around Woltjer's TheoremTopologically Massive Gauge Theories and Force-Free FieldsContact Geometry and PhysicsSub-Riemannian Geometry, Heisenberg Manifolds and Quantum Mechanics of Landau LevelsAbrikosov Lattices, TGB Phases in Liquid Crystals and Heisenberg GroupSub-Riemannian Geometry, Spin Dynamics and Quantum-Classical Optimal ControlFrom Contact Geometry to Contact TopologyClosing Remarks:The Unreasonable Effectivenessof Contact Geometry and Topology in Physical SciencesAppendices:Heisenberg Group in the Context of Sub-Riemannian Geometry and Optimal ControlSub-Riemannian Dynamics of Josephson JunctionsQuantum Computers and Quantum Random WalksThe Measurement Protocol. Geometry and Topology of Entanglements Readership: Students in applied mathematics and theoretical physics. Keywords:Force-Free Fields;Contact and Sub-Riemannian Geometry;Optimal Control;Theoretical PhysicsKey Features:This book is the world's first book on contact/sub-Riemannian geometry and topology for physicistsUnlike books discussing mathematical methods for physicists, this book discusses physical problems first and only then uses new mathematics to solve these problems. Problems are selected from practically all branches of theoretical physicsThis is done with the purpose of demonstrating that contact geometry should be looked upon as a universal language/technical tool of theoretical physicsReviews: “This book is written in the style of the well-known Landau-Lifshitz multivolume course in theoretical physics and its prime goal, as the author puts it, is to show the diversity of applications of contact geometry and topology. I enjoyed reading this book, in which the author allows readers to see for themselves “the same forest behind different kinds of trees”. I strongly recommend this book to interested readers.” MathSciNet



Quantum 20 20


Quantum 20 20
DOWNLOAD

Author : Ian R. Kenyon
language : en
Publisher: Oxford University Press, USA
Release Date : 2019-09-04

Quantum 20 20 written by Ian R. Kenyon and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-04 with Science categories.


The aim of this book is to provide support for lecture courses on general quantum physics for university undergraduates in the final year(s) of a physics degree programme. The first chapter is a review of the basic quantum mechanics needed for getting the best out of the text. Instructors are then free to concentrate on a group of chapters, or select components from all chapters, whichever suits their needs. The text covers key themes of quantum physics, taking the perspective achieved after more than a century of research, and emphasising the effectiveness and the subtlety of quantum concepts in explaining diverse physical phenomena. The book is used to bring out these unifying ideas and illustrate them with important examples from modern experiments and applications. Care has been taken to maintain a level of presentation accessible to undergraduates, and to provide exercises and solutions to reinforce the learning process. Solutions to the exercises are available via the OUP webpage link for the book.



Foundations Of Relational Realism


Foundations Of Relational Realism
DOWNLOAD

Author : Michael Epperson
language : en
Publisher: Lexington Books
Release Date : 2013-06-20

Foundations Of Relational Realism written by Michael Epperson and has been published by Lexington Books this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-20 with Philosophy categories.


If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably exceed the limits of intuitive vision, if not intuitive comprehension. For many physicists and philosophers, however, the currently fashionable tendency toward exotic interpretation of the theoretical formalism is recognized not as a mark of ascent for the tower of physics, but rather an indicator of sway—one that must be dampened rather than encouraged if practical progress is to continue. In this unique two-part volume, designed to be comprehensible to both specialists and non-specialists, the authors chart out a pathway forward by identifying the central deficiency in most interpretations of quantum mechanics: That in its conventional, metrical depiction of extension, inherited from the Enlightenment, objects are characterized as fundamental to relations—i.e., such that relations presuppose objects but objects do not presuppose relations. The authors, by contrast, argue that quantum mechanics exemplifies the fact that physical extensiveness is fundamentally topological rather than metrical, with its proper logico-mathematical framework being category theoretic rather than set theoretic. By this thesis, extensiveness fundamentally entails not only relations of objects, but also relations of relations. Thus, the fundamental quanta of quantum physics are properly defined as units of logico-physical relation rather than merely units of physical relata as is the current convention. Objects are always understood as relata, and likewise relations are always understood objectively. In this way, objects and relations are coherently defined as mutually implicative. The conventional notion of a history as “a story about fundamental objects” is thereby reversed, such that the classical “objects” become the story by which we understand physical systems that are fundamentally histories of quantum events. These are just a few of the novel critical claims explored in this volume—claims whose exemplification in quantum mechanics will, the authors argue, serve more broadly as foundational principles for the philosophy of nature as it evolves through the twenty-first century and beyond.