The Science Of Learning Mathematical Proofs

DOWNLOAD
Download The Science Of Learning Mathematical Proofs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Science Of Learning Mathematical Proofs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Science Of Learning Mathematical Proofs The An Introductory Course
DOWNLOAD
Author : Elana Reiser
language : en
Publisher: World Scientific
Release Date : 2020-11-25
Science Of Learning Mathematical Proofs The An Introductory Course written by Elana Reiser and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-25 with Mathematics categories.
College students struggle with the switch from thinking of mathematics as a calculation based subject to a problem solving based subject. This book describes how the introduction to proofs course can be taught in a way that gently introduces students to this new way of thinking. This introduction utilizes recent research in neuroscience regarding how the brain learns best. Rather than jumping right into proofs, students are first taught how to change their mindset about learning, how to persevere through difficult problems, how to work successfully in a group, and how to reflect on their learning. With these tools in place, students then learn logic and problem solving as a further foundation.Next various proof techniques such as direct proofs, proof by contraposition, proof by contradiction, and mathematical induction are introduced. These proof techniques are introduced using the context of number theory. The last chapter uses Calculus as a way for students to apply the proof techniques they have learned.
Explanation And Proof In Mathematics
DOWNLOAD
Author : Gila Hanna
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-12-04
Explanation And Proof In Mathematics written by Gila Hanna and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-04 with Education categories.
In the four decades since Imre Lakatos declared mathematics a "quasi-empirical science," increasing attention has been paid to the process of proof and argumentation in the field -- a development paralleled by the rise of computer technology and the mounting interest in the logical underpinnings of mathematics. Explanantion and Proof in Mathematics assembles perspectives from mathematics education and from the philosophy and history of mathematics to strengthen mutual awareness and share recent findings and advances in their interrelated fields. With examples ranging from the geometrists of the 17th century and ancient Chinese algorithms to cognitive psychology and current educational practice, contributors explore the role of refutation in generating proofs, the varied links between experiment and deduction, the use of diagrammatic thinking in addition to pure logic, and the uses of proof in mathematics education (including a critique of "authoritative" versus "authoritarian" teaching styles). A sampling of the coverage: The conjoint origins of proof and theoretical physics in ancient Greece. Proof as bearers of mathematical knowledge. Bridging knowing and proving in mathematical reasoning. The role of mathematics in long-term cognitive development of reasoning. Proof as experiment in the work of Wittgenstein. Relationships between mathematical proof, problem-solving, and explanation. Explanation and Proof in Mathematics is certain to attract a wide range of readers, including mathematicians, mathematics education professionals, researchers, students, and philosophers and historians of mathematics.
Book Of Proof
DOWNLOAD
Author : Richard H. Hammack
language : en
Publisher:
Release Date : 2013-05
Book Of Proof written by Richard H. Hammack and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05 with Mathematics categories.
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. Topics include sets, logic, counting, methods of conditional and non-conditional proof, disproof, induction, relations, functions and infinite cardinality.
How To Prove It
DOWNLOAD
Author : Daniel J. Velleman
language : en
Publisher: Cambridge University Press
Release Date : 2006-01-16
How To Prove It written by Daniel J. Velleman and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-16 with Mathematics categories.
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Mathematical Proofs
DOWNLOAD
Author : Gary Chartrand
language : en
Publisher: Pearson
Release Date : 2013
Mathematical Proofs written by Gary Chartrand and has been published by Pearson this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Proof theory categories.
This book prepares students for the more abstract mathematics courses that follow calculus. The author introduces students to proof techniques, analyzing proofs, and writing proofs of their own. It also provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory.
Fundamentals Of Mathematical Proof
DOWNLOAD
Author : Charles Matthews
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2018-05-05
Fundamentals Of Mathematical Proof written by Charles Matthews and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-05 with categories.
This mathematics textbook covers the fundamental ideas used in writing proofs. Proof techniques covered include direct proofs, proofs by contrapositive, proofs by contradiction, proofs in set theory, proofs of existentially or universally quantified predicates, proofs by cases, and mathematical induction. Inductive and deductive reasoning are explored. A straightforward approach is taken throughout. Plenty of examples are included and lots of exercises are provided after each brief exposition on the topics at hand. The text begins with a study of symbolic logic, deductive reasoning, and quantifiers. Inductive reasoning and making conjectures are examined next, and once there are some statements to prove, techniques for proving conditional statements, disjunctions, biconditional statements, and quantified predicates are investigated. Terminology and proof techniques in set theory follow with discussions of the pick-a-point method and the algebra of sets. Cartesian products, equivalence relations, orders, and functions are all incorporated. Particular attention is given to injectivity, surjectivity, and cardinality. The text includes an introduction to topology and abstract algebra, with a comparison of topological properties to algebraic properties. This book can be used by itself for an introduction to proofs course or as a supplemental text for students in proof-based mathematics classes. The contents have been rigorously reviewed and tested by instructors and students in classroom settings.
Mathematical Reasoning
DOWNLOAD
Author : Theodore A. Sundstrom
language : en
Publisher:
Release Date : 2003
Mathematical Reasoning written by Theodore A. Sundstrom and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Proof theory categories.
Focusing on the formal development of mathematics, this book demonstrates how to read and understand, write and construct mathematical proofs. It emphasizes active learning, and uses elementary number theory and congruence arithmetic throughout. Chapter content covers an introduction to writing in mathematics, logical reasoning, constructing proofs, set theory, mathematical induction, functions, equivalence relations, topics in number theory, and topics in set theory. For learners making the transition form calculus to more advanced mathematics.
A Transition To Mathematics With Proofs
DOWNLOAD
Author : Michael J. Cullinane
language : en
Publisher: Jones & Bartlett Publishers
Release Date : 2013
A Transition To Mathematics With Proofs written by Michael J. Cullinane and has been published by Jones & Bartlett Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Mathematics categories.
Developed for the "transition" course for mathematics majors moving beyond the primarily procedural methods of their calculus courses toward a more abstract and conceptual environment found in more advanced courses, A Transition to Mathematics with Proofs emphasizes mathematical rigor and helps students learn how to develop and write mathematical proofs. The author takes great care to develop a text that is accessible and readable for students at all levels. It addresses standard topics such as set theory, number system, logic, relations, functions, and induction in at a pace appropriate for a wide range of readers. Throughout early chapters students gradually become aware of the need for rigor, proof, and precision, and mathematical ideas are motivated through examples.
Cognitive Science And Mathematics Education
DOWNLOAD
Author : Alan H. Schoenfeld
language : en
Publisher: Routledge
Release Date : 2013-04-03
Cognitive Science And Mathematics Education written by Alan H. Schoenfeld and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-03 with Education categories.
This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.
Discrete Mathematics With Proof
DOWNLOAD
Author : Eric Gossett
language : en
Publisher: John Wiley & Sons
Release Date : 2009-06-22
Discrete Mathematics With Proof written by Eric Gossett and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-22 with Mathematics categories.
A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics.