The Statistics And Calculus With Python Workshop

DOWNLOAD
Download The Statistics And Calculus With Python Workshop PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Statistics And Calculus With Python Workshop book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
The Statistics And Calculus With Python Workshop
DOWNLOAD
Author : Peter Farrell
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-08-18
The Statistics And Calculus With Python Workshop written by Peter Farrell and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-18 with Computers categories.
With examples and activities that help you achieve real results, applying calculus and statistical methods relevant to advanced data science has never been so easy Key FeaturesDiscover how most programmers use the main Python libraries when performing statistics with PythonUse descriptive statistics and visualizations to answer business and scientific questionsSolve complicated calculus problems, such as arc length and solids of revolution using derivatives and integralsBook Description Are you looking to start developing artificial intelligence applications? Do you need a refresher on key mathematical concepts? Full of engaging practical exercises, The Statistics and Calculus with Python Workshop will show you how to apply your understanding of advanced mathematics in the context of Python. The book begins by giving you a high-level overview of the libraries you'll use while performing statistics with Python. As you progress, you'll perform various mathematical tasks using the Python programming language, such as solving algebraic functions with Python starting with basic functions, and then working through transformations and solving equations. Later chapters in the book will cover statistics and calculus concepts and how to use them to solve problems and gain useful insights. Finally, you'll study differential equations with an emphasis on numerical methods and learn about algorithms that directly calculate values of functions. By the end of this book, you'll have learned how to apply essential statistics and calculus concepts to develop robust Python applications that solve business challenges. What you will learnGet to grips with the fundamental mathematical functions in PythonPerform calculations on tabular datasets using pandasUnderstand the differences between polynomials, rational functions, exponential functions, and trigonometric functionsUse algebra techniques for solving systems of equationsSolve real-world problems with probabilitySolve optimization problems with derivatives and integralsWho this book is for If you are a Python programmer who wants to develop intelligent solutions that solve challenging business problems, then this book is for you. To better grasp the concepts explained in this book, you must have a thorough understanding of advanced mathematical concepts, such as Markov chains, Euler's formula, and Runge-Kutta methods as the book only explains how these techniques and concepts can be implemented in Python.
The Statistics And Calculus With Python Workshop
DOWNLOAD
Author : Peter Farrell
language : en
Publisher:
Release Date : 2020-08-17
The Statistics And Calculus With Python Workshop written by Peter Farrell and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-17 with Computers categories.
With examples and activities that help you achieve real results, applying calculus and statistical methods relevant to advanced data science has never been so easy Key Features Discover how most programmers use the main Python libraries when performing statistics with Python Use descriptive statistics and visualizations to answer business and scientific questions Solve complicated calculus problems, such as arc length and solids of revolution using derivatives and integrals Book Description Are you looking to start developing artificial intelligence applications? Do you need a refresher on key mathematical concepts? Full of engaging practical exercises, The Statistics and Calculus with Python Workshop will show you how to apply your understanding of advanced mathematics in the context of Python. The book begins by giving you a high-level overview of the libraries you'll use while performing statistics with Python. As you progress, you'll perform various mathematical tasks using the Python programming language, such as solving algebraic functions with Python starting with basic functions, and then working through transformations and solving equations. Later chapters in the book will cover statistics and calculus concepts and how to use them to solve problems and gain useful insights. Finally, you'll study differential equations with an emphasis on numerical methods and learn about algorithms that directly calculate values of functions. By the end of this book, you'll have learned how to apply essential statistics and calculus concepts to develop robust Python applications that solve business challenges. What you will learn Get to grips with the fundamental mathematical functions in Python Perform calculations on tabular datasets using pandas Understand the differences between polynomials, rational functions, exponential functions, and trigonometric functions Use algebra techniques for solving systems of equations Solve real-world problems with probability Solve optimization problems with derivatives and integrals Who this book is for If you are a Python programmer who wants to develop intelligent solutions that solve challenging business problems, then this book is for you. To better grasp the concepts explained in this book, you must have a thorough understanding of advanced mathematical concepts, such as Markov chains, Euler's formula, and Runge-Kutta methods as the book only explains how these techniques and concepts can be implemented in Python.
The Data Science Workshop
DOWNLOAD
Author : Anthony So
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-29
The Data Science Workshop written by Anthony So and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-29 with Computers categories.
Cut through the noise and get real results with a step-by-step approach to data science Key Features Ideal for the data science beginner who is getting started for the first time A data science tutorial with step-by-step exercises and activities that help build key skills Structured to let you progress at your own pace, on your own terms Use your physical print copy to redeem free access to the online interactive edition Book DescriptionYou already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.What you will learn Find out the key differences between supervised and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Learn about different algorithms such as regression, classification, and clustering Discover advanced techniques to improve model ensembling and accuracy Speed up the process of creating new features with automated feature tool Simplify machine learning using open source Python packages Who this book is forOur goal at Packt is to help you be successful, in whatever it is you choose to do. The Data Science Workshop is an ideal data science tutorial for the data science beginner who is just getting started. Pick up a Workshop today and let Packt help you develop skills that stick with you for life.
The Statistics And Machine Learning With R Workshop
DOWNLOAD
Author : Liu Peng
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-10-25
The Statistics And Machine Learning With R Workshop written by Liu Peng and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-25 with Computers categories.
Learn the fundamentals of statistics and machine learning using R libraries for data processing, visualization, model training, and statistical inference Key Features Advance your ML career with the help of detailed explanations, intuitive illustrations, and code examples Gain practical insights into the real-world applications of statistics and machine learning Explore the technicalities of statistics and machine learning for effective data presentation Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe Statistics and Machine Learning with R Workshop is a comprehensive resource packed with insights into statistics and machine learning, along with a deep dive into R libraries. The learning experience is further enhanced by practical examples and hands-on exercises that provide explanations of key concepts. Starting with the fundamentals, you’ll explore the complete model development process, covering everything from data pre-processing to model development. In addition to machine learning, you’ll also delve into R's statistical capabilities, learning to manipulate various data types and tackle complex mathematical challenges from algebra and calculus to probability and Bayesian statistics. You’ll discover linear regression techniques and more advanced statistical methodologies to hone your skills and advance your career. By the end of this book, you'll have a robust foundational understanding of statistics and machine learning. You’ll also be proficient in using R's extensive libraries for tasks such as data processing and model training and be well-equipped to leverage the full potential of R in your future projects.What you will learn Hone your skills in different probability distributions and hypothesis testing Explore the fundamentals of linear algebra and calculus Master crucial statistics and machine learning concepts in theory and practice Discover essential data processing and visualization techniques Engage in interactive data analysis using R Use R to perform statistical modeling, including Bayesian and linear regression Who this book is forThis book is for beginner to intermediate-level data scientists, undergraduate to masters-level students, and early to mid-senior data scientists or analysts looking to expand their knowledge of machine learning by exploring various R libraries. Basic knowledge of linear algebra and data modeling is a must.
Python For Probability Statistics And Machine Learning
DOWNLOAD
Author : José Unpingco
language : en
Publisher: Springer
Release Date : 2019-06-29
Python For Probability Statistics And Machine Learning written by José Unpingco and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-29 with Technology & Engineering categories.
This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.
A Primer On Scientific Programming With Python
DOWNLOAD
Author : Hans Petter Langtangen
language : en
Publisher: Springer
Release Date : 2014-08-01
A Primer On Scientific Programming With Python written by Hans Petter Langtangen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-01 with Computers categories.
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012
The Data Wrangling Workshop
DOWNLOAD
Author : Brian Lipp
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-29
The Data Wrangling Workshop written by Brian Lipp and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-29 with Computers categories.
A beginner's guide to simplifying Extract, Transform, Load (ETL) processes with the help of hands-on tips, tricks, and best practices, in a fun and interactive way Key FeaturesExplore data wrangling with the help of real-world examples and business use casesStudy various ways to extract the most value from your data in minimal timeBoost your knowledge with bonus topics, such as random data generation and data integrity checksBook Description While a huge amount of data is readily available to us, it is not useful in its raw form. For data to be meaningful, it must be curated and refined. If you're a beginner, then The Data Wrangling Workshop will help to break down the process for you. You'll start with the basics and build your knowledge, progressing from the core aspects behind data wrangling, to using the most popular tools and techniques. This book starts by showing you how to work with data structures using Python. Through examples and activities, you'll understand why you should stay away from traditional methods of data cleaning used in other languages and take advantage of the specialized pre-built routines in Python. Later, you'll learn how to use the same Python backend to extract and transform data from an array of sources, including the internet, large database vaults, and Excel financial tables. To help you prepare for more challenging scenarios, the book teaches you how to handle missing or incorrect data, and reformat it based on the requirements from your downstream analytics tool. By the end of this book, you will have developed a solid understanding of how to perform data wrangling with Python, and learned several techniques and best practices to extract, clean, transform, and format your data efficiently, from a diverse array of sources. What you will learnGet to grips with the fundamentals of data wranglingUnderstand how to model data with random data generation and data integrity checksDiscover how to examine data with descriptive statistics and plotting techniquesExplore how to search and retrieve information with regular expressionsDelve into commonly-used Python data science librariesBecome well-versed with how to handle and compensate for missing dataWho this book is for The Data Wrangling Workshop is designed for developers, data analysts, and business analysts who are looking to pursue a career as a full-fledged data scientist or analytics expert. Although this book is for beginners who want to start data wrangling, prior working knowledge of the Python programming language is necessary to easily grasp the concepts covered here. It will also help to have a rudimentary knowledge of relational databases and SQL.
Foundations Of Machine Learning Second Edition
DOWNLOAD
Author : Mehryar Mohri
language : en
Publisher: MIT Press
Release Date : 2018-12-25
Foundations Of Machine Learning Second Edition written by Mehryar Mohri and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-25 with Computers categories.
A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.
Introduction To Probability Statistics And Random Processes
DOWNLOAD
Author : Hossein Pishro-Nik
language : en
Publisher:
Release Date : 2014-08-15
Introduction To Probability Statistics And Random Processes written by Hossein Pishro-Nik and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-15 with Probabilities categories.
The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.
Python Playground
DOWNLOAD
Author : Mahesh Venkitachalam
language : en
Publisher: No Starch Press
Release Date : 2015-10-01
Python Playground written by Mahesh Venkitachalam and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-01 with Computers categories.
Python is a powerful programming language that’s easy to learn and fun to play with. But once you’ve gotten a handle on the basics, what do you do next? Python Playground is a collection of imaginative programming projects that will inspire you to use Python to make art and music, build simulations of real-world phenomena, and interact with hardware like the Arduino and Raspberry Pi. You’ll learn to use common Python tools and libraries like numpy, matplotlib, and pygame to do things like: –Generate Spirograph-like patterns using parametric equations and the turtle module –Create music on your computer by simulating frequency overtones –Translate graphical images into ASCII art –Write an autostereogram program that produces 3D images hidden beneath random patterns –Make realistic animations with OpenGL shaders by exploring particle systems, transparency, and billboarding techniques –Construct 3D visualizations using data from CT and MRI scans –Build a laser show that responds to music by hooking up your computer to an Arduino Programming shouldn’t be a chore. Have some solid, geeky fun with Python Playground. The projects in this book are compatible with both Python 2 and 3.