Theory And Applications Of Hopf Bifurcation

DOWNLOAD
Download Theory And Applications Of Hopf Bifurcation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theory And Applications Of Hopf Bifurcation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Theory And Applications Of Hopf Bifurcation
DOWNLOAD
Author : B. D. Hassard
language : en
Publisher: CUP Archive
Release Date : 1981-02-27
Theory And Applications Of Hopf Bifurcation written by B. D. Hassard and has been published by CUP Archive this book supported file pdf, txt, epub, kindle and other format this book has been release on 1981-02-27 with Mathematics categories.
This text will be of value to all those interested in and studying the subject in the mathematical, natural and engineering sciences.
Bifurcation Theory And Applications
DOWNLOAD
Author : Tian Ma
language : en
Publisher: World Scientific
Release Date : 2005
Bifurcation Theory And Applications written by Tian Ma and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.
This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics. The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation. With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the KuramotoOCoSivashinsky equation, the CahnOCoHillard equation, the GinzburgOCoLandau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering."
The Hopf Bifurcation And Its Applications
DOWNLOAD
Author : Jerrold E. Marsden
language : en
Publisher:
Release Date : 1976
The Hopf Bifurcation And Its Applications written by Jerrold E. Marsden and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1976 with Bifurcation theory categories.
The goal of these notes is to give a reasonahly com plete, although not exhaustive, discussion of what is commonly referred to as the Hopf bifurcation with applications to spe cific problems, including stability calculations. Historical ly, the subject had its origins in the works of Poincare [1] around 1892 and was extensively discussed by Andronov and Witt [1] and their co-workers starting around 1930. Hopf's basic paper [1] appeared in 1942. Although the term "Poincare Andronov-Hopf bifurcation" is more accurate (sometimes Friedrichs is also included), the name "Hopf Bifurcation" seems more common, so we have used it. Hopf's crucial contribution was the extension from two dimensions to higher dimensions. The principal technique employed in the body of the text is that of invariant manifolds. The method of Ruelle Takens [1] is followed, with details, examples and proofs added. Several parts of the exposition in the main text come from papers of P. Chernoff, J. Dorroh, O. Lanford and F. Weissler to whom we are grateful. The general method of invariant manifolds is common in dynamical systems and in ordinary differential equations: see for example, Hale [1,2] and Hartman [1]. Of course, other methods are also available. In an attempt to keep the picture balanced, we have included samples of alternative approaches. Specifically, we have included a translation (by L. Howard and N. Kopell) of Hopf's original (and generally unavailable) paper.
Theory And Applications Of Hopf Bifurcation
DOWNLOAD
Author : B. D. Hassard
language : en
Publisher:
Release Date : 1981
Theory And Applications Of Hopf Bifurcation written by B. D. Hassard and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1981 with categories.
Elements Of Applied Bifurcation Theory
DOWNLOAD
Author : Yuri Kuznetsov
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-06-29
Elements Of Applied Bifurcation Theory written by Yuri Kuznetsov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-06-29 with Mathematics categories.
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Hopf Bifurcation Analysis
DOWNLOAD
Author : Jorge L. Moiola
language : en
Publisher: World Scientific
Release Date : 1996
Hopf Bifurcation Analysis written by Jorge L. Moiola and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Mathematics categories.
This book is devoted to the frequency domain approach, for both regular and degenerate Hopf bifurcation analyses. Besides showing that the time and frequency domain approaches are in fact equivalent, the fact that many significant results and computational formulas obtained in the studies of regular and degenerate Hopf bifurcations from the time domain approach can be translated and reformulated into the corresponding frequency domain setting, and be reconfirmed and rediscovered by using the frequency domain methods, is also explained. The description of how the frequency domain approach can be used to obtain several types of standard bifurcation conditions for general nonlinear dynamical systems is given as well as is demonstrated a very rich pictorial gallery of local bifurcation diagrams for nonlinear systems under simultaneous variations of several system parameters. In conjunction with this graphical analysis of local bifurcation diagrams, the defining and nondegeneracy conditions for several degenerate Hopf bifurcations is presented. With a great deal of algebraic computation, some higher-order harmonic balance approximation formulas are derived, for analyzing the dynamical behavior in small neighborhoods of certain types of degenerate Hopf bifurcations that involve multiple limit cycles and multiple limit points of periodic solutions. In addition, applications in chemical, mechanical and electrical engineering as well as in biology are discussed. This book is designed and written in a style of research monographs rather than classroom textbooks, so that the most recent contributions to the field can be included with references.
Bifurcation Theory Of Functional Differential Equations
DOWNLOAD
Author : Shangjiang Guo
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-07-30
Bifurcation Theory Of Functional Differential Equations written by Shangjiang Guo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-30 with Mathematics categories.
This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).
Introduction To Perturbation Methods
DOWNLOAD
Author : Mark H. Holmes
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-01
Introduction To Perturbation Methods written by Mark H. Holmes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.
This book is an introductory graduate text dealing with many of the perturbation methods currently used by applied mathematicians, scientists, and engineers. The author has based his book on a graduate course he has taught several times over the last ten years to students in applied mathematics, engineering sciences, and physics. The only prerequisite for the course is a background in differential equations. Each chapter begins with an introductory development involving ordinary differential equations. The book covers traditional topics, such as boundary layers and multiple scales. However, it also contains material arising from current research interest. This includes homogenization, slender body theory, symbolic computing, and discrete equations. One of the more important features of this book is contained in the exercises. Many are derived from problems of up- to-date research and are from a wide range of application areas.
Elementary Stability And Bifurcation Theory
DOWNLOAD
Author : Gerard Iooss
language : en
Publisher: Springer
Release Date : 2012-10-08
Elementary Stability And Bifurcation Theory written by Gerard Iooss and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-08 with Mathematics categories.
This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.
Nonlinear Dynamical Economics And Chaotic Motion
DOWNLOAD
Author : Hans-Walter Lorenz
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Nonlinear Dynamical Economics And Chaotic Motion written by Hans-Walter Lorenz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Business & Economics categories.
Usually, the first edition of a book still contains a multiplicity of typographic, con ceptional, and computational errors even if one believes the opposite at the time of publication. As this book did not represent a counterexample to this rule, the current second edition offers a chance to remove at least the known shortcomings. The book has been partly re-organized. The previously rather long Chapter 4 has been split into two separate chapters dealing with discrete-time and continuous time approaches to nonlinear economic dynamics. The short summary of basic properties of linear dynamical systems has been banned to an appendix because the line of thought in the chapter seems to have been unnecessarily interrupted by these technical details and because the book concentrates on nonlinear systems. This appendix, which mainly deals with special formal properties of dynamical sys tems, also contains some new material on invariant subspaces and center-manifold reductions. A brief introduction into the theory of lags and operators is followed by a few remarks on the relation between the 'true' properties of dynamical systems and their behavior observable in numerical experiments. Additional changes in the main part of the book include a re-consideration of Popper's determinism vs. inde terminism discussion in the light of chaotic properties of deterministic, nonlinear systems in Chapter 1. An investigation of a simultaneous price-quantity adjustment process, a more detailed inquiry into the uniqueness property of limit cycles, and a short presentation of relaxation oscillations are included in Chapter 2.