[PDF] Theory Of Evolutionary Computation - eBooks Review

Theory Of Evolutionary Computation


Theory Of Evolutionary Computation
DOWNLOAD

Download Theory Of Evolutionary Computation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Theory Of Evolutionary Computation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Theory Of Evolutionary Computation


Theory Of Evolutionary Computation
DOWNLOAD
Author : Benjamin Doerr
language : en
Publisher: Springer
Release Date : 2019-12-04

Theory Of Evolutionary Computation written by Benjamin Doerr and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-04 with Computers categories.


This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.



Advances In Evolutionary Computing


Advances In Evolutionary Computing
DOWNLOAD
Author : Ashish Ghosh
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Advances In Evolutionary Computing written by Ashish Ghosh and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


The term evolutionary computing refers to the study of the foundations and applications of certain heuristic techniques based on the principles of natural evolution; thus the aim of designing evolutionary algorithms (EAs) is to mimic some of the processes taking place in natural evolution. These algo rithms are classified into three main categories, depending more on historical development than on major functional techniques. In fact, their biological basis is essentially the same. Hence EC = GA uGP u ES uEP EC = Evolutionary Computing GA = Genetic Algorithms,GP = Genetic Programming ES = Evolution Strategies,EP = Evolutionary Programming Although the details of biological evolution are not completely understood (even nowadays), there is some strong experimental evidence to support the following points: • Evolution is a process operating on chromosomes rather than on organ isms. • Natural selection is the mechanism that selects organisms which are well adapted to the environment toreproduce more often than those which are not. • The evolutionary process takes place during the reproduction stage that includes mutation (which causes the chromosomes of offspring to be dif ferent from those of the parents) and recombination (which combines the chromosomes of the parents to produce the offspring). Based upon these features, the previously mentioned three models of evolutionary computing were independently (and almost simultaneously) de veloped. An evolutionary algorithm (EA) is an iterative and stochastic process that operates on a set of individuals (called a population).



Theoretical Aspects Of Evolutionary Computing


Theoretical Aspects Of Evolutionary Computing
DOWNLOAD
Author : Leila Kallel
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-05-08

Theoretical Aspects Of Evolutionary Computing written by Leila Kallel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-05-08 with Business & Economics categories.


This book is the first in the field to provide extensive, entry level tutorials to the theory of Evolutionary Computing, covering the main approaches to understanding the dynamics of Evolutionary Algorithms. It combines this with recent, previously unpublished research papers based on the material of the tutorials. The outcome is a book which is self-contained to a large degree, attractive both to graduate students and researchers from other fields who want to get acquainted with the theory of Evolutionary Computing, and to active researchers in the field who can use this book as a reference and a source of recent results.



Introduction To Evolutionary Computing


Introduction To Evolutionary Computing
DOWNLOAD
Author : Agoston E. Eiben
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

Introduction To Evolutionary Computing written by Agoston E. Eiben and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Computers categories.


Evolutionary Computing is the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. These techniques are being increasingly widely applied to a variety of problems, ranging from practical applications in industry and commerce to leading-edge scientific research. This book presents the first complete overview of this exciting field aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. To this group the book is valuable because it presents EC as something to be used rather than just studied. Last, but not least, this book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.



The Theory Of Evolution Strategies


The Theory Of Evolution Strategies
DOWNLOAD
Author : Hans-Georg Beyer
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

The Theory Of Evolution Strategies written by Hans-Georg Beyer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Computers categories.


Evolutionary Algorithms, in particular Evolution Strategies, Genetic Algorithms, or Evolutionary Programming, have found wide acceptance as robust optimization algorithms in the last ten years. Compared with the broad propagation and the resulting practical prosperity in different scientific fields, the theory has not progressed as much. This monograph provides the framework and the first steps toward the theoretical analysis of Evolution Strategies (ES). The main emphasis is on understanding the functioning of these probabilistic optimization algorithms in real-valued search spaces by investigating the dynamical properties of some well-established ES algorithms. The book introduces the basic concepts of this analysis, such as progress rate, quality gain, and self-adaptation response, and describes how to calculate these quantities. Based on the analysis, functioning principles are derived, aiming at a qualitative understanding of why and how ES algorithms work.



Evolutionary Computation For Modeling And Optimization


Evolutionary Computation For Modeling And Optimization
DOWNLOAD
Author : Daniel Ashlock
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-04

Evolutionary Computation For Modeling And Optimization written by Daniel Ashlock and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-04 with Computers categories.


Evolutionary Computation for Optimization and Modeling is an introduction to evolutionary computation, a field which includes genetic algorithms, evolutionary programming, evolution strategies, and genetic programming. The text is a survey of some application of evolutionary algorithms. It introduces mutation, crossover, design issues of selection and replacement methods, the issue of populations size, and the question of design of the fitness function. It also includes a methodological material on efficient implementation. Some of the other topics in this book include the design of simple evolutionary algorithms, applications to several types of optimization, evolutionary robotics, simple evolutionary neural computation, and several types of automatic programming including genetic programming. The book gives applications to biology and bioinformatics and introduces a number of tools that can be used in biological modeling, including evolutionary game theory. Advanced techniques such as cellular encoding, grammar based encoding, and graph based evolutionary algorithms are also covered. This book presents a large number of homework problems, projects, and experiments, with a goal of illustrating single aspects of evolutionary computation and comparing different methods. Its readership is intended for an undergraduate or first-year graduate course in evolutionary computation for computer science, engineering, or other computational science students. Engineering, computer science, and applied math students will find this book a useful guide to using evolutionary algorithms as a problem solving tool.



Evolutionary Computation


Evolutionary Computation
DOWNLOAD
Author : Xin Yao
language : en
Publisher: World Scientific
Release Date : 1999

Evolutionary Computation written by Xin Yao and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999 with Science categories.


Evolutionary computation is the study of computational systems which use ideas and get inspiration from natural evolution and adaptation. This book is devoted to the theory and application of evolutionary computation. It is a self-contained volume which covers both introductory material and selected advanced topics. The book can roughly be divided into two major parts: the introductory one and the one on selected advanced topics. Each part consists of several chapters which present an in-depth discussion of selected topics. A strong connection is established between evolutionary algorithms and traditional search algorithms. This connection enables us to incorporate ideas in more established fields into evolutionary algorithms. The book is aimed at a wide range of readers. It does not require previous exposure to the field since introductory material is included. It will be of interest to anyone who is interested in adaptive optimization and learning. People in computer science, artificial intelligence, operations research, and various engineering fields will find it particularly interesting.



Evolutionary Algorithms


Evolutionary Algorithms
DOWNLOAD
Author : Alain Petrowski
language : en
Publisher: John Wiley & Sons
Release Date : 2017-04-24

Evolutionary Algorithms written by Alain Petrowski and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-24 with Computers categories.


Evolutionary algorithms are bio-inspired algorithms based on Darwin’s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.



Evolutionary Computation


Evolutionary Computation
DOWNLOAD
Author : David B. Fogel
language : en
Publisher: John Wiley & Sons
Release Date : 2006-01-03

Evolutionary Computation written by David B. Fogel and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-03 with Technology & Engineering categories.


This Third Edition provides the latest tools and techniques that enable computers to learn The Third Edition of this internationally acclaimed publication provides the latest theory and techniques for using simulated evolution to achieve machine intelligence. As a leading advocate for evolutionary computation, the author has successfully challenged the traditional notion of artificial intelligence, which essentially programs human knowledge fact by fact, but does not have the capacity to learn or adapt as evolutionary computation does. Readers gain an understanding of the history of evolutionary computation, which provides a foundation for the author's thorough presentation of the latest theories shaping current research. Balancing theory with practice, the author provides readers with the skills they need to apply evolutionary algorithms that can solve many of today's intransigent problems by adapting to new challenges and learning from experience. Several examples are provided that demonstrate how these evolutionary algorithms learn to solve problems. In particular, the author provides a detailed example of how an algorithm is used to evolve strategies for playing chess and checkers. As readers progress through the publication, they gain an increasing appreciation and understanding of the relationship between learning and intelligence. Readers familiar with the previous editions will discover much new and revised material that brings the publication thoroughly up to date with the latest research, including the latest theories and empirical properties of evolutionary computation. The Third Edition also features new knowledge-building aids. Readers will find a host of new and revised examples. New questions at the end of each chapter enable readers to test their knowledge. Intriguing assignments that prepare readers to manage challenges in industry and research have been added to the end of each chapter as well. This is a must-have reference for professionals in computer and electrical engineering; it provides them with the very latest techniques and applications in machine intelligence. With its question sets and assignments, the publication is also recommended as a graduate-level textbook.



Evolutionary Algorithms


Evolutionary Algorithms
DOWNLOAD
Author : William M. Spears
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Evolutionary Algorithms written by William M. Spears and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Computers categories.


Despite decades of work in evolutionary algorithms, there remains a lot of uncertainty as to when it is beneficial or detrimental to use recombination or mutation. This book provides a characterization of the roles that recombination and mutation play in evolutionary algorithms. It integrates prior theoretical work and introduces new theoretical techniques for studying evolutionary algorithms. An aggregation algorithm for Markov chains is introduced which is useful for studying not only evolutionary algorithms specifically, but also complex systems in general. Practical consequences of the theory are explored and a novel method for comparing search and optimization algorithms is introduced. A focus on discrete rather than real-valued representations allows the book to bridge multiple communities, including evolutionary biologists and population geneticists.