[PDF] Time Series Analysis Methods And Applications - eBooks Review

Time Series Analysis Methods And Applications


Time Series Analysis Methods And Applications
DOWNLOAD

Download Time Series Analysis Methods And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Time Series Analysis Methods And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Time Series Analysis Methods And Applications


Time Series Analysis Methods And Applications
DOWNLOAD
Author : Tata Subba Rao
language : en
Publisher: Elsevier
Release Date : 2012-06-26

Time Series Analysis Methods And Applications written by Tata Subba Rao and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-26 with Mathematics categories.


'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.



Time Series Analysis Methods And Applications For Flight Data


Time Series Analysis Methods And Applications For Flight Data
DOWNLOAD
Author : Jianye Zhang
language : en
Publisher: Springer
Release Date : 2016-12-22

Time Series Analysis Methods And Applications For Flight Data written by Jianye Zhang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-22 with Technology & Engineering categories.


This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.



Handbook Of Time Series Analysis


Handbook Of Time Series Analysis
DOWNLOAD
Author : Björn Schelter
language : en
Publisher: John Wiley & Sons
Release Date : 2006-12-13

Handbook Of Time Series Analysis written by Björn Schelter and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-12-13 with Science categories.


This handbook provides an up-to-date survey of current research topics and applications of time series analysis methods written by leading experts in their fields. It covers recent developments in univariate as well as bivariate and multivariate time series analysis techniques ranging from physics' to life sciences' applications. Each chapter comprises both methodological aspects and applications to real world complex systems, such as the human brain or Earth's climate. Covering an exceptionally broad spectrum of topics, beginners, experts and practitioners who seek to understand the latest developments will profit from this handbook.



State Space Methods For Time Series Analysis


State Space Methods For Time Series Analysis
DOWNLOAD
Author : Jose Casals
language : en
Publisher: CRC Press
Release Date : 2018-09-03

State Space Methods For Time Series Analysis written by Jose Casals and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Mathematics categories.


The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.



Time Series Analysis And Its Applications


Time Series Analysis And Its Applications
DOWNLOAD
Author : Robert H. Shumway
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

Time Series Analysis And Its Applications written by Robert H. Shumway and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.


The goals of this book are to develop an appreciation for the richness and versatility of modern time series analysis as a tool for analyzing data, and still maintain a commitment to theoretical integrity, as exemplified by the seminal works of Brillinger (1981) and Hannan (1970) and the texts by Brockwell and Davis (1991) and Fuller (1995). The advent of more powerful computing, es pecially in the last three years, has provided both real data and new software that can take one considerably beyond the fitting of·simple time domain mod els, such as have been elegantly described in the landmark work of Box and Jenkins (1970). The present book is designed to be useful as a text for courses in time series on several different levels and as a reference work for practition ers facing the analysis of time-correlated data in the physical, biological, and social sciences. We believe the book will be useful as a text at both the undergraduate and graduate levels. An undergraduate course can be accessible to students with a background in regression analysis and might include Sections 1. 1-1. 8, 2. 1-2. 9, and 3. 1-3. 8. Similar courses have been taught at the University of California (Berkeley and Davis) in the past using the earlier book on applied time series analysis by Shumway (1988). Such a course is taken by undergraduate students in mathematics, economics, and statistics and attracts graduate students from the agricultural, biological, and environmental sciences.



Hands On Time Series Analysis With R


Hands On Time Series Analysis With R
DOWNLOAD
Author : Rami Krispin
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-31

Hands On Time Series Analysis With R written by Rami Krispin and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-31 with Computers categories.


Build efficient forecasting models using traditional time series models and machine learning algorithms. Key FeaturesPerform time series analysis and forecasting using R packages such as Forecast and h2oDevelop models and find patterns to create visualizations using the TSstudio and plotly packagesMaster statistics and implement time-series methods using examples mentionedBook Description Time series analysis is the art of extracting meaningful insights from, and revealing patterns in, time series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series. This book explores the basics of time series analysis with R and lays the foundations you need to build forecasting models. You will learn how to preprocess raw time series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data and extract meaningful information from it using both descriptive statistics and rich data visualization tools in R such as the TSstudio, plotly, and ggplot2 packages. The later section of the book delves into traditional forecasting models such as time series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also cover advanced time series regression models with machine learning algorithms such as Random Forest and Gradient Boosting Machine using the h2o package. By the end of this book, you will have the skills needed to explore your data, identify patterns, and build a forecasting model using various traditional and machine learning methods. What you will learnVisualize time series data and derive better insightsExplore auto-correlation and master statistical techniquesUse time series analysis tools from the stats, TSstudio, and forecast packagesExplore and identify seasonal and correlation patternsWork with different time series formats in RExplore time series models such as ARIMA, Holt-Winters, and moreEvaluate high-performance forecasting solutionsWho this book is for Hands-On Time Series Analysis with R is ideal for data analysts, data scientists, and all R developers who are looking to perform time series analysis to predict outcomes effectively. A basic knowledge of statistics is required; some knowledge in R is expected, but not mandatory.



Nonlinear Time Series


Nonlinear Time Series
DOWNLOAD
Author : Randal Douc
language : en
Publisher: CRC Press
Release Date : 2014-01-06

Nonlinear Time Series written by Randal Douc and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-06 with Mathematics categories.


This text emphasizes nonlinear models for a course in time series analysis. After introducing stochastic processes, Markov chains, Poisson processes, and ARMA models, the authors cover functional autoregressive, ARCH, threshold AR, and discrete time series models as well as several complementary approaches. They discuss the main limit theorems for Markov chains, useful inequalities, statistical techniques to infer model parameters, and GLMs. Moving on to HMM models, the book examines filtering and smoothing, parametric and nonparametric inference, advanced particle filtering, and numerical methods for inference.



Time Series Analysis Methods And Applications


Time Series Analysis Methods And Applications
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2012-05-18

Time Series Analysis Methods And Applications written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-18 with Mathematics categories.


The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas



Time Series Analysis


Time Series Analysis
DOWNLOAD
Author : Jonathan D. Cryer
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-03-06

Time Series Analysis written by Jonathan D. Cryer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-03-06 with Mathematics categories.


This book has been developed for a one-semester course usually attended by students in statistics, economics, business, engineering, and quantitative social sciences. A unique feature of this edition is its integration with the R computing environment. Basic applied statistics is assumed through multiple regression. Calculus is assumed only to the extent of minimizing sums of squares but a calculus-based introduction to statistics is necessary for a thorough understanding of some of the theory. Actual time series data drawn from various disciplines are used throughout the book to illustrate the methodology.



Climate Time Series Analysis


Climate Time Series Analysis
DOWNLOAD
Author : Manfred Mudelsee
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-26

Climate Time Series Analysis written by Manfred Mudelsee and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-26 with Science categories.


Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.