Time Series And Statistics

DOWNLOAD
Download Time Series And Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Time Series And Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Time Series Analysis And Forecasting By Example
DOWNLOAD
Author : Søren Bisgaard
language : en
Publisher: John Wiley & Sons
Release Date : 2011-08-24
Time Series Analysis And Forecasting By Example written by Søren Bisgaard and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-24 with Mathematics categories.
An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in detail and explain the relevant theory while also focusing on the interpretation of results in data analysis. Following a discussion of why autocorrelation is often observed when data is collected in time, subsequent chapters explore related topics, including: Graphical tools in time series analysis Procedures for developing stationary, non-stationary, and seasonal models How to choose the best time series model Constant term and cancellation of terms in ARIMA models Forecasting using transfer function-noise models The final chapter is dedicated to key topics such as spurious relationships, autocorrelation in regression, and multiple time series. Throughout the book, real-world examples illustrate step-by-step procedures and instructions using statistical software packages such as SAS, JMP, Minitab, SCA, and R. A related Web site features PowerPoint slides to accompany each chapter as well as the book's data sets. With its extensive use of graphics and examples to explain key concepts, Time Series Analysis and Forecasting by Example is an excellent book for courses on time series analysis at the upper-undergraduate and graduate levels. it also serves as a valuable resource for practitioners and researchers who carry out data and time series analysis in the fields of engineering, business, and economics.
Introduction To Time Series Analysis And Forecasting
DOWNLOAD
Author : Douglas C. Montgomery
language : en
Publisher: John Wiley & Sons
Release Date : 2015-04-27
Introduction To Time Series Analysis And Forecasting written by Douglas C. Montgomery and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-27 with Mathematics categories.
Praise for the First Edition "...[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics." -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecasting. Introduction to Time Series Analysis and Forecasting, Second Edition also includes: Over 300 exercises from diverse disciplines including health care, environmental studies, engineering, and finance More than 50 programming algorithms using JMP®, SAS®, and R that illustrate the theory and practicality of forecasting techniques in the context of time-oriented data New material on frequency domain and spatial temporal data analysis Expanded coverage of the variogram and spectrum with applications as well as transfer and intervention model functions A supplementary website featuring PowerPoint® slides, data sets, and select solutions to the problems Introduction to Time Series Analysis and Forecasting, Second Edition is an ideal textbook upper-undergraduate and graduate-levels courses in forecasting and time series. The book is also an excellent reference for practitioners and researchers who need to model and analyze time series data to generate forecasts.
Time Series Analysis And Its Applications
DOWNLOAD
Author : Robert H. Shumway
language : en
Publisher: Springer
Release Date : 2017-04-25
Time Series Analysis And Its Applications written by Robert H. Shumway and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-25 with Mathematics categories.
The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book’s website for download, making all the data sets and scripts easy to load into R.
Time Series Analysis
DOWNLOAD
Author : William W. S. Wei
language : en
Publisher: Addison-Wesley Longman
Release Date : 2006
Time Series Analysis written by William W. S. Wei and has been published by Addison-Wesley Longman this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.
With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Overview. Fundamental Concepts. Stationary Time Series Models. Nonstationary Time Series Models. Forecasting. Model Identification. Parameter Estimation, Diagnostic Checking, and Model Selection. Seasonal Time Series Models. Testing for a Unit Root. Intervention Analysis and Outlier Detection. Fourier Analysis. Spectral Theory of Stationary Processes. Estimation of the Spectrum. Transfer Function Models. Time Series Regression and GARCH Models. Vector Time Series Models. More on Vector Time Series. State Space Models and the Kalman Filter. Long Memory and Nonlinear Processes. Aggregation and Systematic Sampling in Time Series. For all readers interested in time series analysis.
Applied Statistical Time Series Analysis
DOWNLOAD
Author : Robert H. Shumway
language : en
Publisher: Prentice Hall
Release Date : 1988
Applied Statistical Time Series Analysis written by Robert H. Shumway and has been published by Prentice Hall this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988 with Mathematics categories.
Practical Time Series Analysis
DOWNLOAD
Author : Aileen Nielsen
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-09-20
Practical Time Series Analysis written by Aileen Nielsen and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-20 with Computers categories.
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
Time Series Models For Business And Economic Forecasting
DOWNLOAD
Author : Philip Hans Franses
language : en
Publisher: Cambridge University Press
Release Date : 1998-10-15
Time Series Models For Business And Economic Forecasting written by Philip Hans Franses and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-10-15 with Business & Economics categories.
The econometric analysis of economic and business time series is a major field of research and application. The last few decades have witnessed an increasing interest in both theoretical and empirical developments in constructing time series models and in their important application in forecasting. In Time Series Models for Business and Economic Forecasting, Philip Franses examines recent developments in time series analysis. The early parts of the book focus on the typical features of time series data in business and economics. Part III is concerned with the discussion of some important concepts in time series analysis, the discussion focuses on the techniques which can be readily applied in practice. Parts IV-VIII suggest different modeling methods and model structures. Part IX extends the concepts in chapter three to multivariate time series. Part X examines common aspects across time series.
The Analysis Of Time Series
DOWNLOAD
Author : Chris Chatfield
language : en
Publisher: CRC Press
Release Date : 2016-03-30
The Analysis Of Time Series written by Chris Chatfield and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-30 with Mathematics categories.
Since 1975, The Analysis of Time Series: An Introduction has introduced legions of statistics students and researchers to the theory and practice of time series analysis. With each successive edition, bestselling author Chris Chatfield has honed and refined his presentation, updated the material to reflect advances in the field, and presented interesting new data sets. The sixth edition is no exception. It provides an accessible, comprehensive introduction to the theory and practice of time series analysis. The treatment covers a wide range of topics, including ARIMA probability models, forecasting methods, spectral analysis, linear systems, state-space models, and the Kalman filter. It also addresses nonlinear, multivariate, and long-memory models. The author has carefully updated each chapter, added new discussions, incorporated new datasets, and made those datasets available for download from www.crcpress.com. A free online appendix on time series analysis using R can be accessed at http://people.bath.ac.uk/mascc/TSA.usingR.doc. Highlights of the Sixth Edition: A new section on handling real data New discussion on prediction intervals A completely revised and restructured chapter on more advanced topics, with new material on the aggregation of time series, analyzing time series in finance, and discrete-valued time series A new chapter of examples and practical advice Thorough updates and revisions throughout the text that reflect recent developments and dramatic changes in computing practices over the last few years The analysis of time series can be a difficult topic, but as this book has demonstrated for two-and-a-half decades, it does not have to be daunting. The accessibility, polished presentation, and broad coverage of The Analysis of Time Series make it simply the best introduction to the subject available.
Time Series For Data Scientists
DOWNLOAD
Author : Juana Sanchez
language : en
Publisher: Cambridge University Press
Release Date : 2023-05-11
Time Series For Data Scientists written by Juana Sanchez and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-11 with Mathematics categories.
Learn by doing with this user-friendly introduction to time series data analysis in R. This book explores the intricacies of managing and cleaning time series data of different sizes, scales and granularity, data preparation for analysis and visualization, and different approaches to classical and machine learning time series modeling and forecasting. A range of pedagogical features support students, including end-of-chapter exercises, problems, quizzes and case studies. The case studies are designed to stretch the learner, introducing larger data sets, enhanced data management skills, and R packages and functions appropriate for real-world data analysis. On top of providing commented R programs and data sets, the book's companion website offers extra case studies, lecture slides, videos and exercise solutions. Accessible to those with a basic background in statistics and probability, this is an ideal hands-on text for undergraduate and graduate students, as well as researchers in data-rich disciplines
Applied Time Series Analysis And Forecasting With Python
DOWNLOAD
Author : Changquan Huang
language : en
Publisher: Springer Nature
Release Date : 2022-10-19
Applied Time Series Analysis And Forecasting With Python written by Changquan Huang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-19 with Mathematics categories.
This textbook presents methods and techniques for time series analysis and forecasting and shows how to use Python to implement them and solve data science problems. It covers not only common statistical approaches and time series models, including ARMA, SARIMA, VAR, GARCH and state space and Markov switching models for (non)stationary, multivariate and financial time series, but also modern machine learning procedures and challenges for time series forecasting. Providing an organic combination of the principles of time series analysis and Python programming, it enables the reader to study methods and techniques and practice writing and running Python code at the same time. Its data-driven approach to analyzing and modeling time series data helps new learners to visualize and interpret both the raw data and its computed results. Primarily intended for students of statistics, economics and data science with an undergraduate knowledge of probability and statistics, the book will equally appeal to industry professionals in the fields of artificial intelligence and data science, and anyone interested in using Python to solve time series problems.