Time Series Analysis And Its Applications

DOWNLOAD
Download Time Series Analysis And Its Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Time Series Analysis And Its Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Time Series Analysis And Its Applications
DOWNLOAD
Author : Robert H. Shumway
language : en
Publisher: Springer
Release Date : 2017-04-25
Time Series Analysis And Its Applications written by Robert H. Shumway and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-25 with Mathematics categories.
The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book’s website for download, making all the data sets and scripts easy to load into R.
Time Series Analysis
DOWNLOAD
Author : Jonathan D. Cryer
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-04-04
Time Series Analysis written by Jonathan D. Cryer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-04-04 with Business & Economics categories.
This book has been developed for a one-semester course usually attended by students in statistics, economics, business, engineering, and quantitative social sciences. A unique feature of this edition is its integration with the R computing environment. Basic applied statistics is assumed through multiple regression. Calculus is assumed only to the extent of minimizing sums of squares but a calculus-based introduction to statistics is necessary for a thorough understanding of some of the theory. Actual time series data drawn from various disciplines are used throughout the book to illustrate the methodology.
Multivariate Time Series Analysis And Applications
DOWNLOAD
Author : William W. S. Wei
language : en
Publisher: John Wiley & Sons
Release Date : 2018-12-31
Multivariate Time Series Analysis And Applications written by William W. S. Wei and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-31 with Mathematics categories.
An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis—Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering.
Time Series Analysis Modeling And Applications
DOWNLOAD
Author : Witold Pedrycz
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-11-29
Time Series Analysis Modeling And Applications written by Witold Pedrycz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-29 with Computers categories.
Temporal and spatiotemporal data form an inherent fabric of the society as we are faced with streams of data coming from numerous sensors, data feeds, recordings associated with numerous areas of application embracing physical and human-generated phenomena (environmental data, financial markets, Internet activities, etc.). A quest for a thorough analysis, interpretation, modeling and prediction of time series comes with an ongoing challenge for developing models that are both accurate and user-friendly (interpretable). The volume is aimed to exploit the conceptual and algorithmic framework of Computational Intelligence (CI) to form a cohesive and comprehensive environment for building models of time series. The contributions covered in the volume are fully reflective of the wealth of the CI technologies by bringing together ideas, algorithms, and numeric studies, which convincingly demonstrate their relevance, maturity and visible usefulness. It reflects upon the truly remarkable diversity of methodological and algorithmic approaches and case studies. This volume is aimed at a broad audience of researchers and practitioners engaged in various branches of operations research, management, social sciences, engineering, and economics. Owing to the nature of the material being covered and a way it has been arranged, it establishes a comprehensive and timely picture of the ongoing pursuits in the area and fosters further developments.
Time Series Analysis And Applications
DOWNLOAD
Author : Nawaz Mohamudally
language : en
Publisher: IntechOpen
Release Date : 2018-01-24
Time Series Analysis And Applications written by Nawaz Mohamudally and has been published by IntechOpen this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-24 with Computers categories.
Time Series Analysis (TSA) and Applications offers a dense content of current research and development in the field of data science. The book presents time series from a multidisciplinary approach that covers a wide range of sectors ranging from biostatistics to renewable energy forecasting. Contrary to previous literatures on time, serious readers will discover the potential of TSA in areas other than finance or weather forecasting. The choice of the algorithmic transform for different scenarios, which is a key determinant in the application of TSA, can be understood through the diverse domain applications. Readers looking for deep understanding and practicability of TSA will be delighted. Early career researchers too will appreciate the technicalities and refined mathematical complexities surrounding TSA. Our wish is that this book adds to the body of TSA knowledge and opens up avenues for those who are looking forward to applying TSA in their own context.
Time Series Analysis Methods And Applications
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2012-05-18
Time Series Analysis Methods And Applications written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-18 with Mathematics categories.
The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas
Data Science And Its Applications
DOWNLOAD
Author : Aakanksha Sharaff
language : en
Publisher: CRC Press
Release Date : 2021-08-18
Data Science And Its Applications written by Aakanksha Sharaff and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-18 with Computers categories.
The term "data" being mostly used, experimented, analyzed, and researched, "Data Science and its Applications" finds relevance in all domains of research studies including science, engineering, technology, management, mathematics, and many more in wide range of applications such as sentiment analysis, social medial analytics, signal processing, gene analysis, market analysis, healthcare, bioinformatics etc. The book on Data Science and its applications discusses about data science overview, scientific methods, data processing, extraction of meaningful information from data, and insight for developing the concept from different domains, highlighting mathematical and statistical models, operations research, computer programming, machine learning, data visualization, pattern recognition and others. The book also highlights data science implementation and evaluation of performance in several emerging applications such as information retrieval, cognitive science, healthcare, and computer vision. The data analysis covers the role of data science depicting different types of data such as text, image, biomedical signal etc. useful for a wide range of real time applications. The salient features of the book are: Overview, Challenges and Opportunities in Data Science and Real Time Applications Addressing Big Data Issues Useful Machine Learning Methods Disease Detection and Healthcare Applications utilizing Data Science Concepts and Deep Learning Applications in Stock Market, Education, Behavior Analysis, Image Captioning, Gene Analysis and Scene Text Analysis Data Optimization Due to multidisciplinary applications of data science concepts, the book is intended for wide range of readers that include Data Scientists, Big Data Analysists, Research Scholars engaged in Data Science and Machine Learning applications.
Time Series And System Analysis With Applications
DOWNLOAD
Author : Sudhakar M. Pandit
language : en
Publisher:
Release Date : 1983-05-05
Time Series And System Analysis With Applications written by Sudhakar M. Pandit and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1983-05-05 with Mathematics categories.
A comprehensive, applications-oriented treatment of time series analysis. Integrates time series theory with methods of systems analysis. Clearly explains the use of ARMA forecasts and includes a complete treatment of the Box/Jenkins approach to modelling. Provides worked examples.
Proceedings Of The Third International Conference On Wavelet Analysis And Its Applications Waa
DOWNLOAD
Author : Jian Ping Li
language : en
Publisher: World Scientific
Release Date : 2003
Proceedings Of The Third International Conference On Wavelet Analysis And Its Applications Waa written by Jian Ping Li and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.
Mastering Time Series Analysis And Forecasting With Python Bridging Theory And Practice Through Insights Techniques And Tools For Effective Time Series Analysis In Python
DOWNLOAD
Author : Sulekha Aloorravi
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2024-03-26
Mastering Time Series Analysis And Forecasting With Python Bridging Theory And Practice Through Insights Techniques And Tools For Effective Time Series Analysis In Python written by Sulekha Aloorravi and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-26 with Computers categories.
Decode the language of time with Python. Discover powerful techniques to analyze, forecast, and innovate. Key Features ● Dive into time series analysis fundamentals, progressing to advanced Python techniques. ● Gain practical expertise with real-world datasets and hands-on examples. ● Strengthen skills with code snippets, exercises, and projects for deeper understanding. Book Description "Mastering Time Series Analysis and Forecasting with Python" is an essential handbook tailored for those seeking to harness the power of time series data in their work. The book begins with foundational concepts and seamlessly guides readers through Python libraries such as Pandas, NumPy, and Plotly for effective data manipulation, visualization, and exploration. Offering pragmatic insights, it enables adept visualization, pattern recognition, and anomaly detection. Advanced discussions cover feature engineering and a spectrum of forecasting methodologies, including machine learning and deep learning techniques such as ARIMA, LSTM, and CNN. Additionally, the book covers multivariate and multiple time series forecasting, providing readers with a comprehensive understanding of advanced modeling techniques and their applications across diverse domains. Readers develop expertise in crafting precise predictive models and addressing real-world complexities. Complete with illustrative examples, code snippets, and hands-on exercises, this manual empowers readers to excel, make informed decisions, and derive optimal value from time series data. What you will learn ● Understand the fundamentals of time series data, including temporal patterns, trends, and seasonality. ● Proficiently utilize Python libraries such as pandas, NumPy, and matplotlib for efficient data manipulation and visualization. ● Conduct exploratory analysis of time series data, including identifying patterns, detecting anomalies, and extracting meaningful features. ● Build accurate and reliable predictive models using a variety of machine learning and deep learning techniques, including ARIMA, LSTM, and CNN. ● Perform multivariate and multiple time series forecasting, allowing for more comprehensive analysis and prediction across diverse datasets. ● Evaluate model performance using a range of metrics and validation techniques, ensuring the reliability and robustness of predictive models. Table of Contents 1. Introduction to Time Series 2. Overview of Time Series Libraries in Python 3. Visualization of Time Series Data 4. Exploratory Analysis of Time Series Data 5. Feature Engineering on Time Series 6. Time Series Forecasting – ML Approach Part 1 7. Time Series Forecasting – ML Approach Part 2 8. Time Series Forecasting - DL Approach 9. Multivariate Time Series, Metrics, and Validation Index