[PDF] Time Series Prediction And Applications - eBooks Review

Time Series Prediction And Applications


Time Series Prediction And Applications
DOWNLOAD

Download Time Series Prediction And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Time Series Prediction And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Time Series Prediction And Applications


Time Series Prediction And Applications
DOWNLOAD
Author : Amit Konar
language : en
Publisher: Springer
Release Date : 2017-03-25

Time Series Prediction And Applications written by Amit Konar and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-25 with Technology & Engineering categories.


This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications. It also proposes new uncertainty management techniques in an economic time-series using type-2 fuzzy sets for prediction of the time-series at a given time point from its preceding value in fluctuating business environments. It employs machine learning to determine repetitively occurring similar structural patterns in the time-series and uses stochastic automaton to predict the most probabilistic structure at a given partition of the time-series. Such predictions help in determining probabilistic moves in a stock index time-series Primarily written for graduate students and researchers in computer science, the book is equally useful for researchers/professionals in business intelligence and stock index prediction. A background of undergraduate level mathematics is presumed, although not mandatory, for most of the sections. Exercises with tips are provided at the end of each chapter to the readers’ ability and understanding of the topics covered.



Computational Intelligence In Time Series Forecasting


Computational Intelligence In Time Series Forecasting
DOWNLOAD
Author : Ajoy K. Palit
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-07-01

Computational Intelligence In Time Series Forecasting written by Ajoy K. Palit and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-07-01 with Computers categories.


Foresight in an engineering business can make the difference between success and failure, and can be vital to the effective control of industrial systems. The authors of this book harness the power of intelligent technologies individually and in combination.



Forecasting Principles And Practice


Forecasting Principles And Practice
DOWNLOAD
Author : Rob J Hyndman
language : en
Publisher: OTexts
Release Date : 2018-05-08

Forecasting Principles And Practice written by Rob J Hyndman and has been published by OTexts this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-08 with Business & Economics categories.


Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.



Theory And Applications Of Time Series Analysis


Theory And Applications Of Time Series Analysis
DOWNLOAD
Author : Olga Valenzuela
language : en
Publisher: Springer Nature
Release Date : 2020-11-20

Theory And Applications Of Time Series Analysis written by Olga Valenzuela and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-20 with Business & Economics categories.


This book presents a selection of peer-reviewed contributions on the latest advances in time series analysis, presented at the International Conference on Time Series and Forecasting (ITISE 2019), held in Granada, Spain, on September 25-27, 2019. The first two parts of the book present theoretical contributions on statistical and advanced mathematical methods, and on econometric models, financial forecasting and risk analysis. The remaining four parts include practical contributions on time series analysis in energy; complex/big data time series and forecasting; time series analysis with computational intelligence; and time series analysis and prediction for other real-world problems. Given this mix of topics, readers will acquire a more comprehensive perspective on the field of time series analysis and forecasting. The ITISE conference series provides a forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the foundations, theory, models and applications of time series analysis and forecasting. It focuses on interdisciplinary research encompassing computer science, mathematics, statistics and econometrics.



Practical Time Series Analysis


Practical Time Series Analysis
DOWNLOAD
Author : Aileen Nielsen
language : en
Publisher: O'Reilly Media
Release Date : 2019-09-20

Practical Time Series Analysis written by Aileen Nielsen and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-20 with Computers categories.


Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance



Theory And Applications Of Time Series Analysis


Theory And Applications Of Time Series Analysis
DOWNLOAD
Author : Olga Valenzuela
language : en
Publisher:
Release Date : 2019

Theory And Applications Of Time Series Analysis written by Olga Valenzuela and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Time-series analysis categories.


This book presents selected peer-reviewed contributions from the International Conference on Time Series and Forecasting, ITISE 2018, held in Granada, Spain, on September 19-21, 2018. The first three parts of the book focus on the theory of time series analysis and forecasting, and discuss statistical methods, modern computational intelligence methodologies, econometric models, financial forecasting, and risk analysis. In turn, the last three parts are dedicated to applied topics and include papers on time series analysis in the earth sciences, energy time series forecasting, and time series analysis and prediction in other real-world problems. The book offers readers valuable insights into the different aspects of time series analysis and forecasting, allowing them to benefit both from its sophisticated and powerful theory, and from its practical applications, which address real-world problems in a range of disciplines. The ITISE conference series provides a valuable forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing computer science, mathematics, statistics and econometrics.



Essentials Of Time Series For Financial Applications


Essentials Of Time Series For Financial Applications
DOWNLOAD
Author : Massimo Guidolin
language : en
Publisher: Academic Press
Release Date : 2018-05-29

Essentials Of Time Series For Financial Applications written by Massimo Guidolin and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-29 with Business & Economics categories.


Essentials of Time Series for Financial Applications serves as an agile reference for upper level students and practitioners who desire a formal, easy-to-follow introduction to the most important time series methods applied in financial applications (pricing, asset management, quant strategies, and risk management). Real-life data and examples developed with EViews illustrate the links between the formal apparatus and the applications. The examples either directly exploit the tools that EViews makes available or use programs that by employing EViews implement specific topics or techniques. The book balances a formal framework with as few proofs as possible against many examples that support its central ideas. Boxes are used throughout to remind readers of technical aspects and definitions and to present examples in a compact fashion, with full details (workout files) available in an on-line appendix. The more advanced chapters provide discussion sections that refer to more advanced textbooks or detailed proofs. - Provides practical, hands-on examples in time-series econometrics - Presents a more application-oriented, less technical book on financial econometrics - Offers rigorous coverage, including technical aspects and references for the proofs, despite being an introduction - Features examples worked out in EViews (9 or higher)



Time Series Analysis


Time Series Analysis
DOWNLOAD
Author : Jonathan D. Cryer
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-03-06

Time Series Analysis written by Jonathan D. Cryer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-03-06 with Mathematics categories.


This book has been developed for a one-semester course usually attended by students in statistics, economics, business, engineering, and quantitative social sciences. A unique feature of this edition is its integration with the R computing environment. Basic applied statistics is assumed through multiple regression. Calculus is assumed only to the extent of minimizing sums of squares but a calculus-based introduction to statistics is necessary for a thorough understanding of some of the theory. Actual time series data drawn from various disciplines are used throughout the book to illustrate the methodology.



Hands On Time Series Analysis With R


Hands On Time Series Analysis With R
DOWNLOAD
Author : Rami Krispin
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-31

Hands On Time Series Analysis With R written by Rami Krispin and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-31 with Computers categories.


Build efficient forecasting models using traditional time series models and machine learning algorithms. Key FeaturesPerform time series analysis and forecasting using R packages such as Forecast and h2oDevelop models and find patterns to create visualizations using the TSstudio and plotly packagesMaster statistics and implement time-series methods using examples mentionedBook Description Time series analysis is the art of extracting meaningful insights from, and revealing patterns in, time series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series. This book explores the basics of time series analysis with R and lays the foundations you need to build forecasting models. You will learn how to preprocess raw time series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data and extract meaningful information from it using both descriptive statistics and rich data visualization tools in R such as the TSstudio, plotly, and ggplot2 packages. The later section of the book delves into traditional forecasting models such as time series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also cover advanced time series regression models with machine learning algorithms such as Random Forest and Gradient Boosting Machine using the h2o package. By the end of this book, you will have the skills needed to explore your data, identify patterns, and build a forecasting model using various traditional and machine learning methods. What you will learnVisualize time series data and derive better insightsExplore auto-correlation and master statistical techniquesUse time series analysis tools from the stats, TSstudio, and forecast packagesExplore and identify seasonal and correlation patternsWork with different time series formats in RExplore time series models such as ARIMA, Holt-Winters, and moreEvaluate high-performance forecasting solutionsWho this book is for Hands-On Time Series Analysis with R is ideal for data analysts, data scientists, and all R developers who are looking to perform time series analysis to predict outcomes effectively. A basic knowledge of statistics is required; some knowledge in R is expected, but not mandatory.