[PDF] Time Series Sales Forecasting And Prediction Using Machine Learning With Tkinter - eBooks Review

Time Series Sales Forecasting And Prediction Using Machine Learning With Tkinter


Time Series Sales Forecasting And Prediction Using Machine Learning With Tkinter
DOWNLOAD

Download Time Series Sales Forecasting And Prediction Using Machine Learning With Tkinter PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Time Series Sales Forecasting And Prediction Using Machine Learning With Tkinter book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Time Series Sales Forecasting And Prediction Using Machine Learning With Tkinter


Time Series Sales Forecasting And Prediction Using Machine Learning With Tkinter
DOWNLOAD
Author : Rismon Hasiholan Sianipar
language : en
Publisher: Independently Published
Release Date : 2023-09-23

Time Series Sales Forecasting And Prediction Using Machine Learning With Tkinter written by Rismon Hasiholan Sianipar and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-23 with categories.


This project leverages the power of data visualization and exploration to provide a comprehensive understanding of sales trends over time. Through an intuitive GUI built with Tkinter, users can seamlessly navigate through various aspects of their sales data. The journey begins with a detailed visualization of the dataset. This critical step allows users to grasp the overall structure, identify trends, and spot outliers. The application provides a user-friendly interface to interact with the data, offering an informative visual representation of the sales records. Moving forward, users can delve into the distribution of features within the dataset. This feature distribution analysis provides valuable insights into the characteristics of the sales data. It enables users to identify patterns, anomalies, and correlations among different attributes, paving the way for more accurate forecasting and prediction. One of the central functionalities of this application lies in its ability to perform sales forecasting using machine learning regressors. By employing powerful regression models, such as Random Forest Regressor, KNN regressor, Support Vector Regressor, AdaBoost regressor, Gradient Boosting Regressor, MLP regressor, Lasso regressor, and Ridge regressor, the application assists users in predicting future sales based on historical data. This empowers businesses to make informed decisions and plan for upcoming periods with greater precision. The application takes sales forecasting a step further by allowing users to fine-tune their models using Grid Search. This powerful optimization technique systematically explores different combinations of hyperparameters to find the optimal configuration for the machine learning models. This ensures that the models are fine-tuned for maximum accuracy in sales predictions. In addition to sales forecasting, the application addresses the critical issue of customer churn prediction. It identifies customers who are likely to churn based on a combination of features and behaviors. By employing a selection of machine learning models and Grid Search such as Random Forest Classifier, Support Vector Classifier, and K-Nearest Neighbors Classifier, Linear Regression Classifier, AdaBoost Classifier, Support Vector Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting Classifier, and Multi-Layer Perceptron Classifier, the application provides a robust framework for accurately predicting which customers are at risk of leaving. The project doesn't just stop at prediction; it also includes functionalities for evaluating model performance. Users can assess the accuracy, precision, recall, and F1-score of their models, allowing them to gauge the effectiveness of their forecasting and customer churn predictions. Furthermore, the application incorporates an intuitive user interface with widgets such as menus, buttons, listboxes, and comboboxes. These elements facilitate seamless interaction and navigation within the application, ensuring a user-friendly experience. To enhance user convenience, the application also supports data loading from external sources. It enables users to import their sales datasets directly into the application, streamlining the analysis process. The project is built on a foundation of modular and organized code. Each functionality is encapsulated within separate classes, promoting code reusability and maintainability. This ensures that the application is robust and can be easily extended or modified to accommodate future enhancements.



Time Series Sales Forecasting And Prediction Using Machine Learning With Tkinter


Time Series Sales Forecasting And Prediction Using Machine Learning With Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-09-23

Time Series Sales Forecasting And Prediction Using Machine Learning With Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-23 with Computers categories.


This project leverages the power of data visualization and exploration to provide a comprehensive understanding of sales trends over time. Through an intuitive GUI built with Tkinter, users can seamlessly navigate through various aspects of their sales data. The journey begins with a detailed visualization of the dataset. This critical step allows users to grasp the overall structure, identify trends, and spot outliers. The application provides a user-friendly interface to interact with the data, offering an informative visual representation of the sales records. Moving forward, users can delve into the distribution of features within the dataset. This feature distribution analysis provides valuable insights into the characteristics of the sales data. It enables users to identify patterns, anomalies, and correlations among different attributes, paving the way for more accurate forecasting and prediction. One of the central functionalities of this application lies in its ability to perform sales forecasting using machine learning regressors. By employing powerful regression models, such as Random Forest Regressor, KNN regressor, Support Vector Regressor, AdaBoost regressor, Gradient Boosting Regressor, MLP regressor, Lasso regressor, and Ridge regressor, the application assists users in predicting future sales based on historical data. This empowers businesses to make informed decisions and plan for upcoming periods with greater precision. The application takes sales forecasting a step further by allowing users to fine-tune their models using Grid Search. This powerful optimization technique systematically explores different combinations of hyperparameters to find the optimal configuration for the machine learning models. This ensures that the models are fine-tuned for maximum accuracy in sales predictions. In addition to sales forecasting, the application addresses the critical issue of customer churn prediction. It identifies customers who are likely to churn based on a combination of features and behaviors. By employing a selection of machine learning models and Grid Search such as Random Forest Classifier, Support Vector Classifier, and K-Nearest Neighbors Classifier, Linear Regression Classifier, AdaBoost Classifier, Support Vector Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting Classifier, and Multi-Layer Perceptron Classifier, the application provides a robust framework for accurately predicting which customers are at risk of leaving. The project doesn't just stop at prediction; it also includes functionalities for evaluating model performance. Users can assess the accuracy, precision, recall, and F1-score of their models, allowing them to gauge the effectiveness of their forecasting and customer churn predictions. Furthermore, the application incorporates an intuitive user interface with widgets such as menus, buttons, listboxes, and comboboxes. These elements facilitate seamless interaction and navigation within the application, ensuring a user-friendly experience. To enhance user convenience, the application also supports data loading from external sources. It enables users to import their sales datasets directly into the application, streamlining the analysis process. The project is built on a foundation of modular and organized code. Each functionality is encapsulated within separate classes, promoting code reusability and maintainability. This ensures that the application is robust and can be easily extended or modified to accommodate future enhancements. You can download the dataset from: http://viviansiahaan.blogspot.com/2023/09/time-series-sales-forecasting-and.html.



Data Visualization Time Series Forecasting And Prediction Using Machine Learning With Tkinter


Data Visualization Time Series Forecasting And Prediction Using Machine Learning With Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-09-06

Data Visualization Time Series Forecasting And Prediction Using Machine Learning With Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-06 with Computers categories.


This "Data Visualization, Time-Series Forecasting, and Prediction using Machine Learning with Tkinter" project is a comprehensive and multifaceted application that leverages data visualization, time-series forecasting, and machine learning techniques to gain insights into bitcoin data and make predictions. This project serves as a valuable tool for financial analysts, traders, and investors seeking to make informed decisions in the stock market. The project begins with data visualization, where historical bitcoin market data is visually represented using various plots and charts. This provides users with an intuitive understanding of the data's trends, patterns, and fluctuations. Features distribution analysis is conducted to assess the statistical properties of the dataset, helping users identify key characteristics that may impact forecasting and prediction. One of the project's core functionalities is time-series forecasting. Through a user-friendly interface built with Tkinter, users can select a stock symbol and specify the time horizon for forecasting. The project supports multiple machine learning regressors, such as Linear Regression, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Multi-Layer Perceptron, Lasso, Ridge, AdaBoost, and KNN, allowing users to choose the most suitable algorithm for their forecasting needs. Time-series forecasting is crucial for making predictions about stock prices, which is essential for investment strategies. The project employs various machine learning regressors to predict the adjusted closing price of bitcoin stock. By training these models on historical data, users can obtain predictions for future adjusted closing prices. This information is invaluable for traders and investors looking to make buy or sell decisions. The project also incorporates hyperparameter tuning and cross-validation to enhance the accuracy of these predictions. These models employ metrics such as Mean Absolute Error (MAE), which quantifies the average absolute discrepancy between predicted values and actual values. Lower MAE values signify superior model performance. Additionally, Mean Squared Error (MSE) is used to calculate the average squared differences between predicted and actual values, with lower MSE values indicating better model performance. Root Mean Squared Error (RMSE), derived from MSE, provides insights in the same units as the target variable and is valued for its lower values, denoting superior performance. Lastly, R-squared (R2) evaluates the fraction of variance in the target variable that can be predicted from independent variables, with higher values signifying better model fit. An R2 of 1 implies a perfect model fit. In addition to close price forecasting, the project extends its capabilities to predict daily returns. By implementing grid search, users can fine-tune the hyperparameters of machine learning models such as Random Forests, Gradient Boosting, Support Vector, Decision Tree, Gradient Boosting, Extreme Gradient Boosting, Multi-Layer Perceptron, and AdaBoost Classifiers. This optimization process aims to maximize the predictive accuracy of daily returns. Accurate daily return predictions are essential for assessing risk and formulating effective trading strategies. Key metrics in these classifiers encompass Accuracy, which represents the ratio of correctly predicted instances to the total number of instances, Precision, which measures the proportion of true positive predictions among all positive predictions, and Recall (also known as Sensitivity or True Positive Rate), which assesses the proportion of true positive predictions among all actual positive instances. The F1-Score serves as the harmonic mean of Precision and Recall, offering a balanced evaluation, especially when considering the trade-off between false positives and false negatives. The ROC Curve illustrates the trade-off between Recall and False Positive Rate, while the Area Under the ROC Curve (AUC-ROC) summarizes this trade-off. The Confusion Matrix provides a comprehensive view of classifier performance by detailing true positives, true negatives, false positives, and false negatives, facilitating the computation of various metrics like accuracy, precision, and recall. The selection of these metrics hinges on the project's specific objectives and the characteristics of the dataset, ensuring alignment with the intended goals and the ramifications of false positives and false negatives, which hold particular significance in financial contexts where decisions can have profound consequences. Overall, the "Data Visualization, Time-Series Forecasting, and Prediction using Machine Learning with Tkinter" project serves as a powerful and user-friendly platform for financial data analysis and decision-making. It bridges the gap between complex machine learning techniques and accessible user interfaces, making financial analysis and prediction more accessible to a broader audience. With its comprehensive features, this project empowers users to gain insights from historical data, make informed investment decisions, and develop effective trading strategies in the dynamic world of finance. You can download the dataset from: http://viviansiahaan.blogspot.com/2023/09/data-visualization-time-series.html.



Python Data Science Handbook


Python Data Science Handbook
DOWNLOAD
Author : Jake VanderPlas
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-11-21

Python Data Science Handbook written by Jake VanderPlas and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-21 with Computers categories.


For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms



Text Analytics With Python


Text Analytics With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Apress
Release Date : 2016-11-30

Text Analytics With Python written by Dipanjan Sarkar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-30 with Computers categories.


Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Builda text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data



Emerging Technologies In Data Mining And Information Security


Emerging Technologies In Data Mining And Information Security
DOWNLOAD
Author : João Manuel R. S. Tavares
language : en
Publisher: Springer Nature
Release Date : 2021-05-04

Emerging Technologies In Data Mining And Information Security written by João Manuel R. S. Tavares and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-04 with Technology & Engineering categories.


This book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2020) held at the University of Engineering & Management, Kolkata, India, during July 2020. The book is organized in three volumes and includes high-quality research work by academicians and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers, and case studies related to all the areas of data mining, machine learning, Internet of things (IoT), and information security.



Hands On Time Series Analysis With R


Hands On Time Series Analysis With R
DOWNLOAD
Author : Rami Krispin
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-31

Hands On Time Series Analysis With R written by Rami Krispin and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-31 with Computers categories.


Build efficient forecasting models using traditional time series models and machine learning algorithms. Key FeaturesPerform time series analysis and forecasting using R packages such as Forecast and h2oDevelop models and find patterns to create visualizations using the TSstudio and plotly packagesMaster statistics and implement time-series methods using examples mentionedBook Description Time series analysis is the art of extracting meaningful insights from, and revealing patterns in, time series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series. This book explores the basics of time series analysis with R and lays the foundations you need to build forecasting models. You will learn how to preprocess raw time series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data and extract meaningful information from it using both descriptive statistics and rich data visualization tools in R such as the TSstudio, plotly, and ggplot2 packages. The later section of the book delves into traditional forecasting models such as time series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also cover advanced time series regression models with machine learning algorithms such as Random Forest and Gradient Boosting Machine using the h2o package. By the end of this book, you will have the skills needed to explore your data, identify patterns, and build a forecasting model using various traditional and machine learning methods. What you will learnVisualize time series data and derive better insightsExplore auto-correlation and master statistical techniquesUse time series analysis tools from the stats, TSstudio, and forecast packagesExplore and identify seasonal and correlation patternsWork with different time series formats in RExplore time series models such as ARIMA, Holt-Winters, and moreEvaluate high-performance forecasting solutionsWho this book is for Hands-On Time Series Analysis with R is ideal for data analysts, data scientists, and all R developers who are looking to perform time series analysis to predict outcomes effectively. A basic knowledge of statistics is required; some knowledge in R is expected, but not mandatory.



Machine Learning Applications Using Python


Machine Learning Applications Using Python
DOWNLOAD
Author : Puneet Mathur
language : en
Publisher: Apress
Release Date : 2018-12-12

Machine Learning Applications Using Python written by Puneet Mathur and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-12 with Computers categories.


Gain practical skills in machine learning for finance, healthcare, and retail. This book uses a hands-on approach by providing case studies from each of these domains: you’ll see examples that demonstrate how to use machine learning as a tool for business enhancement. As a domain expert, you will not only discover how machine learning is used in finance, healthcare, and retail, but also work through practical case studies where machine learning has been implemented. Machine Learning Applications Using Python is divided into three sections, one for each of the domains (healthcare, finance, and retail). Each section starts with an overview of machine learning and key technological advancements in that domain. You’ll then learn more by using case studies on how organizations are changing the game in their chosen markets. This book has practical case studies with Python code and domain-specific innovative ideas for monetizing machine learning. What You Will Learn Discover applied machine learning processes and principles Implement machine learning in areas of healthcare, finance, and retail Avoid the pitfalls of implementing applied machine learning Build Python machine learning examples in the three subject areas Who This Book Is For Data scientists and machine learning professionals.



Advanced Machine Learning Technologies And Applications


Advanced Machine Learning Technologies And Applications
DOWNLOAD
Author : Aboul Ella Hassanien
language : en
Publisher: Springer Nature
Release Date : 2020-05-25

Advanced Machine Learning Technologies And Applications written by Aboul Ella Hassanien and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-25 with Technology & Engineering categories.


This book presents the refereed proceedings of the 5th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2020), held at Manipal University Jaipur, India, on February 13 – 15, 2020, and organized in collaboration with the Scientific Research Group in Egypt (SRGE). The papers cover current research in machine learning, big data, Internet of Things, biomedical engineering, fuzzy logic and security, as well as intelligence swarms and optimization.



Forecasting Principles And Practice


Forecasting Principles And Practice
DOWNLOAD
Author : Rob J Hyndman
language : en
Publisher: OTexts
Release Date : 2018-05-08

Forecasting Principles And Practice written by Rob J Hyndman and has been published by OTexts this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-08 with Business & Economics categories.


Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.