[PDF] Tiny Machine Learning Quickstart - eBooks Review

Tiny Machine Learning Quickstart


Tiny Machine Learning Quickstart
DOWNLOAD

Download Tiny Machine Learning Quickstart PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Tiny Machine Learning Quickstart book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Tiny Machine Learning Quickstart


Tiny Machine Learning Quickstart
DOWNLOAD
Author : Simone Salerno
language : en
Publisher: Springer Nature
Release Date : 2025-04-15

Tiny Machine Learning Quickstart written by Simone Salerno and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-15 with Computers categories.


Be a part of the Tiny Machine Learning (TinyML) revolution in the ever-growing world of IoT. This book examines the concepts, workflows, and tools needed to make your projects smarter, all within the Arduino platform. You’ll start by exploring Machine learning in the context of embedded, resource-constrained devices as opposed to your powerful, gigabyte-RAM computer. You’ll review the unique challenges it poses, but also the limitless possibilities it opens. Next, you’ll work through nine projects that encompass different data types (tabular, time series, audio and images) and tasks (classification and regression). Each project comes with tips and tricks to collect, load, plot and analyse each type of data. Throughout the book, you’ll apply three different approaches to TinyML: traditional algorithms (Decision Tree, Logistic Regression, SVM), Edge Impulse (a no-code online tools), and TensorFlow for Microcontrollers. Each has its strengths and weaknesses, and you will learn how to choose the most appropriate for your use case. TinyML Quickstart will provide a solid reference for all your future projects with minimal cost and effort. What You Will Learn Navigate embedded ML challenges Integrate Python with Arduino for seamless data processing Implement ML algorithms Harness the power of Tensorflow for artificial neural networks Leverage no-code tools like Edge Impulse Execute real-world projects Who This Book Is For Electronics hobbyists and developers with a basic understanding of Tensorflow, ML in Python, and Arduino-based programming looking to apply that knowledge with microcontrollers. Previous experience with C++ is helpful but not required.



Tinyml


Tinyml
DOWNLOAD
Author : Pete Warden
language : en
Publisher: O'Reilly Media
Release Date : 2019-12-16

Tinyml written by Pete Warden and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-16 with Computers categories.


Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size



Deep Learning With Pytorch Quick Start Guide


Deep Learning With Pytorch Quick Start Guide
DOWNLOAD
Author : David Julian
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-24

Deep Learning With Pytorch Quick Start Guide written by David Julian and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-24 with Computers categories.


Introduction to deep learning and PyTorch by building a convolutional neural network and recurrent neural network for real-world use cases such as image classification, transfer learning, and natural language processing. Key FeaturesClear and concise explanationsGives important insights into deep learning modelsPractical demonstration of key conceptsBook Description PyTorch is extremely powerful and yet easy to learn. It provides advanced features, such as supporting multiprocessor, distributed, and parallel computation. This book is an excellent entry point for those wanting to explore deep learning with PyTorch to harness its power. This book will introduce you to the PyTorch deep learning library and teach you how to train deep learning models without any hassle. We will set up the deep learning environment using PyTorch, and then train and deploy different types of deep learning models, such as CNN, RNN, and autoencoders. You will learn how to optimize models by tuning hyperparameters and how to use PyTorch in multiprocessor and distributed environments. We will discuss long short-term memory network (LSTMs) and build a language model to predict text. By the end of this book, you will be familiar with PyTorch's capabilities and be able to utilize the library to train your neural networks with relative ease. What you will learnSet up the deep learning environment using the PyTorch libraryLearn to build a deep learning model for image classificationUse a convolutional neural network for transfer learningUnderstand to use PyTorch for natural language processingUse a recurrent neural network to classify textUnderstand how to optimize PyTorch in multiprocessor and distributed environmentsTrain, optimize, and deploy your neural networks for maximum accuracy and performanceLearn to deploy production-ready modelsWho this book is for Developers and Data Scientist familiar with Machine Learning but new to deep learning, or existing practitioners of deep learning who would like to use PyTorch to train their deep learning models will find this book to be useful. Having knowledge of Python programming will be an added advantage, while previous exposure to PyTorch is not needed.



Machine Learning In Java


Machine Learning In Java
DOWNLOAD
Author : AshishSingh Bhatia
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-11-28

Machine Learning In Java written by AshishSingh Bhatia and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-28 with Mathematics categories.


Leverage the power of Java and its associated machine learning libraries to build powerful predictive models Key FeaturesSolve predictive modeling problems using the most popular machine learning Java libraries Explore data processing, machine learning, and NLP concepts using JavaML, WEKA, MALLET librariesPractical examples, tips, and tricks to help you understand applied machine learning in JavaBook Description As the amount of data in the world continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of big data and Data Science. The main challenge is how to transform data into actionable knowledge. Machine Learning in Java will provide you with the techniques and tools you need. You will start by learning how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. The code in this book works for JDK 8 and above, the code is tested on JDK 11. Moving on, you will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text analysis. By the end of the book, you will have explored related web resources and technologies that will help you take your learning to the next level. By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data. What you will learnDiscover key Java machine learning librariesImplement concepts such as classification, regression, and clusteringDevelop a customer retention strategy by predicting likely churn candidatesBuild a scalable recommendation engine with Apache MahoutApply machine learning to fraud, anomaly, and outlier detectionExperiment with deep learning concepts and algorithmsWrite your own activity recognition model for eHealth applicationsWho this book is for If you want to learn how to use Java's machine learning libraries to gain insight from your data, this book is for you. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications with ease. You should be familiar with Java programming and some basic data mining concepts to make the most of this book, but no prior experience with machine learning is required.



Machine Learning End To End Guide For Java Developers


Machine Learning End To End Guide For Java Developers
DOWNLOAD
Author : Richard M. Reese
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-10-05

Machine Learning End To End Guide For Java Developers written by Richard M. Reese and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-05 with Computers categories.


Develop, Implement and Tuneup your Machine Learning applications using the power of Java programming About This Book Detailed coverage on key machine learning topics with an emphasis on both theoretical and practical aspects Address predictive modeling problems using the most popular machine learning Java libraries A comprehensive course covering a wide spectrum of topics such as machine learning and natural language through practical use-cases Who This Book Is For This course is the right resource for anyone with some knowledge of Java programming who wants to get started with Data Science and Machine learning as quickly as possible. If you want to gain meaningful insights from big data and develop intelligent applications using Java, this course is also a must-have. What You Will Learn Understand key data analysis techniques centered around machine learning Implement Java APIs and various techniques such as classification, clustering, anomaly detection, and more Master key Java machine learning libraries, their functionality, and various kinds of problems that can be addressed using each of them Apply machine learning to real-world data for fraud detection, recommendation engines, text classification, and human activity recognition Experiment with semi-supervised learning and stream-based data mining, building high-performing and real-time predictive models Develop intelligent systems centered around various domains such as security, Internet of Things, social networking, and more In Detail Machine Learning is one of the core area of Artificial Intelligence where computers are trained to self-learn, grow, change, and develop on their own without being explicitly programmed. In this course, we cover how Java is employed to build powerful machine learning models to address the problems being faced in the world of Data Science. The course demonstrates complex data extraction and statistical analysis techniques supported by Java, applying various machine learning methods, exploring machine learning sub-domains, and exploring real-world use cases such as recommendation systems, fraud detection, natural language processing, and more, using Java programming. The course begins with an introduction to data science and basic data science tasks such as data collection, data cleaning, data analysis, and data visualization. The next section has a detailed overview of statistical techniques, covering machine learning, neural networks, and deep learning. The next couple of sections cover applying machine learning methods using Java to a variety of chores including classifying, predicting, forecasting, market basket analysis, clustering stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, and deep learning. The last section highlights real-world test cases such as performing activity recognition, developing image recognition, text classification, and anomaly detection. The course includes premium content from three of our most popular books: Java for Data Science Machine Learning in Java Mastering Java Machine Learning On completion of this course, you will understand various machine learning techniques, different machine learning java algorithms you can use to gain data insights, building data models to analyze larger complex data sets, and incubating applications using Java and machine learning algorithms in the field of artificial intelligence. Style and approach This comprehensive course proceeds from being a tutorial to a practical guide, providing an introduction to machine learning and different machine learning techniques, exploring machine learning with Java libraries, and demonstrating real-world machine learning use cases using the Java platform.



Deep Learning Practical Neural Networks With Java


Deep Learning Practical Neural Networks With Java
DOWNLOAD
Author : Yusuke Sugomori
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-06-08

Deep Learning Practical Neural Networks With Java written by Yusuke Sugomori and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-08 with Computers categories.


Build and run intelligent applications by leveraging key Java machine learning libraries About This Book Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries. Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life. What You Will Learn Get a practical deep dive into machine learning and deep learning algorithms Explore neural networks using some of the most popular Deep Learning frameworks Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms Apply machine learning to fraud, anomaly, and outlier detection Experiment with deep learning concepts, algorithms, and the toolbox for deep learning Select and split data sets into training, test, and validation, and explore validation strategies Apply the code generated in practical examples, including weather forecasting and pattern recognition In Detail Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work. The course provides you with highly practical content explaining deep learning with Java, from the following Packt books: Java Deep Learning Essentials Machine Learning in Java Neural Network Programming with Java, Second Edition Style and approach This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you'll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application



Dive Into Deep Learning


Dive Into Deep Learning
DOWNLOAD
Author : Joanne Quinn
language : en
Publisher: Corwin Press
Release Date : 2019-07-15

Dive Into Deep Learning written by Joanne Quinn and has been published by Corwin Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-15 with Education categories.


The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself.



Automated Machine Learning


Automated Machine Learning
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer
Release Date : 2019-05-17

Automated Machine Learning written by Frank Hutter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-17 with Computers categories.


This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.



Ai And Machine Learning For On Device Development


Ai And Machine Learning For On Device Development
DOWNLOAD
Author : Laurence Moroney
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-08-12

Ai And Machine Learning For On Device Development written by Laurence Moroney and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-12 with Computers categories.


Chapter 2. Introduction to Computer Vision -- Using Neurons for Vision -- Your First Classifier: Recognizing Clothing Items -- The Data: Fashion MNIST -- A Model Architecture to Parse Fashion MNIST -- Coding the Fashion MNIST Model -- Transfer Learning for Computer Vision -- Summary -- Chapter 3. Introduction to ML Kit -- Building a Face Detection App on Android -- Step 1: Create the App with Android Studio -- Step 2: Add and Configure ML Kit -- Step 3: Define the User Interface -- Step 4: Add the Images as Assets -- Step 5: Load the UI with a Default Picture.



Using Stable Diffusion With Python


Using Stable Diffusion With Python
DOWNLOAD
Author : Andrew Zhu (Shudong Zhu)
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-06-03

Using Stable Diffusion With Python written by Andrew Zhu (Shudong Zhu) and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-03 with Computers categories.


Master AI image generation by leveraging GenAI tools and techniques such as diffusers, LoRA, textual inversion, ControlNet, and prompt design in this hands-on guide, with key images printed in color Key Features Master the art of generating stunning AI artwork with the help of expert guidance and ready-to-run Python code Get instant access to emerging extensions and open-source models Leverage the power of community-shared models and LoRA to produce high-quality images that captivate audiences Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionStable Diffusion is a game-changing AI tool that enables you to create stunning images with code. The author, a seasoned Microsoft applied data scientist and contributor to the Hugging Face Diffusers library, leverages his 15+ years of experience to help you master Stable Diffusion by understanding the underlying concepts and techniques. You’ll be introduced to Stable Diffusion, grasp the theory behind diffusion models, set up your environment, and generate your first image using diffusers. You'll optimize performance, leverage custom models, and integrate community-shared resources like LoRAs, textual inversion, and ControlNet to enhance your creations. Covering techniques such as face restoration, image upscaling, and image restoration, you’ll focus on unlocking prompt limitations, scheduled prompt parsing, and weighted prompts to create a fully customized and industry-level Stable Diffusion app. This book also looks into real-world applications in medical imaging, remote sensing, and photo enhancement. Finally, you'll gain insights into extracting generation data, ensuring data persistence, and leveraging AI models like BLIP for image description extraction. By the end of this book, you'll be able to use Python to generate and edit images and leverage solutions to build Stable Diffusion apps for your business and users.What you will learn Explore core concepts and applications of Stable Diffusion and set up your environment for success Refine performance, manage VRAM usage, and leverage community-driven resources like LoRAs and textual inversion Harness the power of ControlNet, IP-Adapter, and other methodologies to generate images with unprecedented control and quality Explore developments in Stable Diffusion such as video generation using AnimateDiff Write effective prompts and leverage LLMs to automate the process Discover how to train a Stable Diffusion LoRA from scratch Who this book is for If you're looking to gain control over AI image generation, particularly through the diffusion model, this book is for you. Moreover, data scientists, ML engineers, researchers, and Python application developers seeking to create AI image generation applications based on the Stable Diffusion framework can benefit from the insights provided in the book.