[PDF] Topics In Mathematical Analysis And Differential Geometry - eBooks Review

Topics In Mathematical Analysis And Differential Geometry


Topics In Mathematical Analysis And Differential Geometry
DOWNLOAD

Download Topics In Mathematical Analysis And Differential Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Topics In Mathematical Analysis And Differential Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Topics In Mathematical Analysis And Differential Geometry


Topics In Mathematical Analysis And Differential Geometry
DOWNLOAD
Author : Nicolas K. Laos
language : en
Publisher: World Scientific
Release Date : 1998

Topics In Mathematical Analysis And Differential Geometry written by Nicolas K. Laos and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Mathematics categories.


This book studies the interplay between mathematical analysis and differential geometry as well as the foundations of these two fields. The development of a unified approach to topological vector spaces, differential geometry and algebraic and differential topology of function manifolds led to the broad expansion of global analysis. This book serves as a self-contained reference on both the prerequisites for further study and the recent research results which have played a decisive role in the advancement of global analysis.



Differential Geometry And Mathematical Physics


Differential Geometry And Mathematical Physics
DOWNLOAD
Author : Gerd Rudolph
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-11-09

Differential Geometry And Mathematical Physics written by Gerd Rudolph and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-09 with Science categories.


Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.



Topics In Differential Geometry


Topics In Differential Geometry
DOWNLOAD
Author : Peter W. Michor
language : en
Publisher: American Mathematical Soc.
Release Date :

Topics In Differential Geometry written by Peter W. Michor and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


"This book treats the fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry. It gives the careful reader working knowledge in a wide range of topics of modern coordinate-free differential geometry in not too many pages. A prerequisite for using this book is a good knowledge of undergraduate analysis and linear algebra."--BOOK JACKET.



Differential Geometry And Analysis On Cr Manifolds


Differential Geometry And Analysis On Cr Manifolds
DOWNLOAD
Author : Sorin Dragomir
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-06-10

Differential Geometry And Analysis On Cr Manifolds written by Sorin Dragomir and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-10 with Mathematics categories.


Presents many major differential geometric acheivements in the theory of CR manifolds for the first time in book form Explains how certain results from analysis are employed in CR geometry Many examples and explicitly worked-out proofs of main geometric results in the first section of the book making it suitable as a graduate main course or seminar textbook Provides unproved statements and comments inspiring further study



Differential Geometry Differential Equations And Mathematical Physics


Differential Geometry Differential Equations And Mathematical Physics
DOWNLOAD
Author : Maria Ulan
language : en
Publisher: Springer Nature
Release Date : 2021-02-12

Differential Geometry Differential Equations And Mathematical Physics written by Maria Ulan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-12 with Mathematics categories.


This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.



Trends In Differential Geometry Complex Analysis And Mathematical Physics


Trends In Differential Geometry Complex Analysis And Mathematical Physics
DOWNLOAD
Author : Kouei Sekigawa
language : en
Publisher: World Scientific Publishing Company Incorporated
Release Date : 2009

Trends In Differential Geometry Complex Analysis And Mathematical Physics written by Kouei Sekigawa and has been published by World Scientific Publishing Company Incorporated this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.


A discrete model for Kähler magnetic fields on a complex hyperbolic space / T. Adachi -- Integrability condition on the boundary parameters of the asymmetric exclusion process and matrix product ansatz / B. Aneva -- Remarks on the double-complex Laplacian / L. Apostolova -- Generalizations of conjugate connections / O. Calin, H. Matsuzoe, J. Zhang -- Asymptotics of generalized value distribution for Herglotz functions / Y. T. Christodoulides -- Cyclic hyper-scalar systems / S. Dimiev, M. S. Marinov, Z. Zhelev -- Plane curves associated with integrable dynamical systems of the Frenet-Serret type / P. A. Djondjorov, V. M. Vassilev, I. M. Mladenov -- Relativistic strain and electromagnetic photon-like objects / S. Donev, M. Tashkova -- A construction of minimal surfaces in flat tori by swelling / N. Ejiri -- On NLS equations on BD.I symmetric spaces with constant boundary conditions / V. S. Gerdjikov, N. A. Kostov -- Orthogonal almost complex structures on S[symbol] x R[symbol] / H. Hashimoto, M. Ohashi -- Persistence of solutions for some integrable shallow water equations / D. Henry -- Some geometric properties and objects related to Bézier curves / M. J. Hristov -- Heisenberg relations in the general case / B. Z. Iliev -- Poisson structures of equations associated with groups of diffeomorphisms / R. I. Ivanov -- Hyperbolic Gauss maps and parallel surfaces in hyperbolic three-space / M. Kokubu -- On the lax pair for two and three wave interaction system / N. A. Kostov -- Mathematical outlook of fractals and chaos related to simple orthorhombic Ising-Onsager-Zhang lattices / J. Ławrynowicz, S. Marchiafava, M. Nowak-Kepczyk -- A characterization of Clifford minimal hypersurfaces of a sphere in terms of their geodesics / S. Maeda -- On the curvature properties of real time-like hypersurfaces of Kähler manifolds with Norden metric / M. Manev, M. Teofilova -- Some submanifolds of almost contact manifolds with Norden metric / G. Nakova -- A short note on the double-complex Laplace operator / P. Popivanov -- Monogenic, hypermonogenic and holomorphic Cliffordian functions - a survey / I. P. Ramadanoff -- On some classes of exact solutions of eikonal equation / Ł. T. Stepień -- Dirichlet property for tessellations of tiling-type 4 on a plane by congrent pentagons / Y. Takeo, T. Adachi -- Almost complex connections on almost complex manifolds with Norden metric / M. Teofilova -- Pseudo-boson coherent and Fock states / D. A. Trifonov -- New integrable equations of mKdV type / T. I. Valchev -- Integrable dynamical systems of the Frenet-Serret type / V. M. Vassilev, P. A. Djondjorov, I. M. Mladenov



Discrete Differential Geometry


Discrete Differential Geometry
DOWNLOAD
Author : Alexander I. Bobenko
language : en
Publisher: American Mathematical Society
Release Date : 2023-09-14

Discrete Differential Geometry written by Alexander I. Bobenko and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-14 with Mathematics categories.


An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.



Elementary Topics In Differential Geometry


Elementary Topics In Differential Geometry
DOWNLOAD
Author : J. A. Thorpe
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Elementary Topics In Differential Geometry written by J. A. Thorpe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.



Topics In Mathematical Analysis


Topics In Mathematical Analysis
DOWNLOAD
Author : Paolo Ciatti
language : en
Publisher: World Scientific
Release Date : 2008

Topics In Mathematical Analysis written by Paolo Ciatti and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.


"This volume consists of a series of lecture notes on mathematical analysis. The contributors have been selected on the basis of both their outstanding scientific level and their clarity of exposition. Thus, the present collection is particularly suited to young researchers and graduate students. Through this volume, the editors intend to provide the reader with material otherwise difficult to find and written in a manner which is also accessible to nonexperts."--BOOK JACKET.



Seminar On Differential Geometry


Seminar On Differential Geometry
DOWNLOAD
Author : Shing-Tung Yau
language : en
Publisher: Princeton University Press
Release Date : 1982-03-21

Seminar On Differential Geometry written by Shing-Tung Yau and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1982-03-21 with Mathematics categories.


This collection of papers constitutes a wide-ranging survey of recent developments in differential geometry and its interactions with other fields, especially partial differential equations and mathematical physics. This area of mathematics was the subject of a special program at the Institute for Advanced Study in Princeton during the academic year 1979-1980; the papers in this volume were contributed by the speakers in the sequence of seminars organized by Shing-Tung Yau for this program. Both survey articles and articles presenting new results are included. The articles on differential geometry and partial differential equations include a general survey article by the editor on the relationship of the two fields and more specialized articles on topics including harmonic mappings, isoperimetric and Poincaré inequalities, metrics with specified curvature properties, the Monge-Arnpere equation, L2 harmonic forms and cohomology, manifolds of positive curvature, isometric embedding, and Kraumlhler manifolds and metrics. The articles on differential geometry and mathematical physics cover such topics as renormalization, instantons, gauge fields and the Yang-Mills equation, nonlinear evolution equations, incompleteness of space-times, black holes, and quantum gravity. A feature of special interest is the inclusion of a list of more than one hundred unsolved research problems compiled by the editor with comments and bibliographical information.