Topological Derivative In Shape Optimization

DOWNLOAD
Download Topological Derivative In Shape Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Topological Derivative In Shape Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Topological Derivatives In Shape Optimization
DOWNLOAD
Author : Antonio André Novotny
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-14
Topological Derivatives In Shape Optimization written by Antonio André Novotny and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-14 with Technology & Engineering categories.
The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, fracture mechanics sensitivity analysis and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intended for researchers and graduate students in applied mathematics and computational mechanics interested in any aspect of topological asymptotic analysis. In particular, it can be adopted as a textbook in advanced courses on the subject and shall be useful for readers interested on the mathematical aspects of topological asymptotic analysis as well as on applications of topological derivatives in computation mechanics.
Introduction To Shape Optimization
DOWNLOAD
Author : Jan Sokolowski
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Introduction To Shape Optimization written by Jan Sokolowski and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem.
Topological Derivative In Shape Optimization
DOWNLOAD
Author : Antonio Andre Novotny
language : en
Publisher:
Release Date : 2013
Topological Derivative In Shape Optimization written by Antonio Andre Novotny and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Asymptotic expansions categories.
The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, sensitivity analysis in fracture mechanics and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intended for researchers and graduate students in applied mathematics and computational mechanics interested in any aspect of topological asymptotic analysis. In particular, it can be adopted as a textbook in advanced courses on the subject and shall be useful for readers interested in the mathematical aspects of topological asymptotic analysis as well as in applications of topological derivatives in computational mechanics.
Applications Of The Topological Derivative Method
DOWNLOAD
Author : Antonio André Novotny
language : en
Publisher: Springer
Release Date : 2018-12-28
Applications Of The Topological Derivative Method written by Antonio André Novotny and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-28 with Technology & Engineering categories.
The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.
An Introduction To The Topological Derivative Method
DOWNLOAD
Author : Antonio André Novotny
language : en
Publisher: Springer Nature
Release Date : 2020-01-21
An Introduction To The Topological Derivative Method written by Antonio André Novotny and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-21 with Mathematics categories.
This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.
Shapes And Geometries
DOWNLOAD
Author : M. C. Delfour
language : en
Publisher: SIAM
Release Date : 2011-01-01
Shapes And Geometries written by M. C. Delfour and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-01 with Mathematics categories.
Presents the latest groundbreaking theoretical foundation to shape optimization in a form accessible to mathematicians, scientists and engineers.
Design Sensitivity Analysis Of Structural Systems
DOWNLOAD
Author : Vadim Komkov
language : en
Publisher: Academic Press
Release Date : 1986-05-01
Design Sensitivity Analysis Of Structural Systems written by Vadim Komkov and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986-05-01 with Technology & Engineering categories.
The book is organized into four chapters. The first three treat distinct types of design variables, and the fourth presents a built-up structure formulation that combines the other three. The first chapter treats finite-dimensional problems, in which the state variable is a finite-dimensional vector of structure displacements and the design parameters. The structual state equations are matrix equations for static response, vibration, and buckling of structures and matrix differential equations for transient dynamic response of structures, which design variables appearing in the coefficient matrices.
New Trends In Shape Optimization
DOWNLOAD
Author : Aldo Pratelli
language : en
Publisher: Birkhäuser
Release Date : 2015-12-01
New Trends In Shape Optimization written by Aldo Pratelli and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-01 with Mathematics categories.
This volume reflects “New Trends in Shape Optimization” and is based on a workshop of the same name organized at the Friedrich-Alexander University Erlangen-Nürnberg in September 2013. During the workshop senior mathematicians and young scientists alike presented their latest findings. The format of the meeting allowed fruitful discussions on challenging open problems, and triggered a number of new and spontaneous collaborations. As such, the idea was born to produce this book, each chapter of which was written by a workshop participant, often with a collaborator. The content of the individual chapters ranges from survey papers to original articles; some focus on the topics discussed at the Workshop, while others involve arguments outside its scope but which are no less relevant for the field today. As such, the book offers readers a balanced introduction to the emerging field of shape optimization.
Inverse Problems Design And Optimization Vol 1
DOWNLOAD
Author :
language : en
Publisher: Editora E-papers
Release Date :
Inverse Problems Design And Optimization Vol 1 written by and has been published by Editora E-papers this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.
Nanoelectronic Coupled Problems Solutions
DOWNLOAD
Author : E. Jan W. ter Maten
language : en
Publisher: Springer Nature
Release Date : 2019-11-06
Nanoelectronic Coupled Problems Solutions written by E. Jan W. ter Maten and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-06 with Mathematics categories.
Designs in nanoelectronics often lead to challenging simulation problems and include strong feedback couplings. Industry demands provisions for variability in order to guarantee quality and yield. It also requires the incorporation of higher abstraction levels to allow for system simulation in order to shorten the design cycles, while at the same time preserving accuracy. The methods developed here promote a methodology for circuit-and-system-level modelling and simulation based on best practice rules, which are used to deal with coupled electromagnetic field-circuit-heat problems, as well as coupled electro-thermal-stress problems that emerge in nanoelectronic designs. This book covers: (1) advanced monolithic/multirate/co-simulation techniques, which are combined with envelope/wavelet approaches to create efficient and robust simulation techniques for strongly coupled systems that exploit the different dynamics of sub-systems within multiphysics problems, and which allow designers to predict reliability and ageing; (2) new generalized techniques in Uncertainty Quantification (UQ) for coupled problems to include a variability capability such that robust design and optimization, worst case analysis, and yield estimation with tiny failure probabilities are possible (including large deviations like 6-sigma); (3) enhanced sparse, parametric Model Order Reduction techniques with a posteriori error estimation for coupled problems and for UQ to reduce the complexity of the sub-systems while ensuring that the operational and coupling parameters can still be varied and that the reduced models offer higher abstraction levels that can be efficiently simulated. All the new algorithms produced were implemented, transferred and tested by the EDA vendor MAGWEL. Validation was conducted on industrial designs provided by end-users from the semiconductor industry, who shared their feedback, contributed to the measurements, and supplied both material data and process data. In closing, a thorough comparison to measurements on real devices was made in order to demonstrate the algorithms’ industrial applicability.