[PDF] Ultimate Enterprise Data Analysis And Forecasting Using Python Leverage Cloud Platforms With Azure Time Series Insights And Aws Forecast Components For Time Series Analysis And Forecasting With Deep Learning Modeling Using Python - eBooks Review

Ultimate Enterprise Data Analysis And Forecasting Using Python Leverage Cloud Platforms With Azure Time Series Insights And Aws Forecast Components For Time Series Analysis And Forecasting With Deep Learning Modeling Using Python


Ultimate Enterprise Data Analysis And Forecasting Using Python Leverage Cloud Platforms With Azure Time Series Insights And Aws Forecast Components For Time Series Analysis And Forecasting With Deep Learning Modeling Using Python
DOWNLOAD

Download Ultimate Enterprise Data Analysis And Forecasting Using Python Leverage Cloud Platforms With Azure Time Series Insights And Aws Forecast Components For Time Series Analysis And Forecasting With Deep Learning Modeling Using Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ultimate Enterprise Data Analysis And Forecasting Using Python Leverage Cloud Platforms With Azure Time Series Insights And Aws Forecast Components For Time Series Analysis And Forecasting With Deep Learning Modeling Using Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Ultimate Enterprise Data Analysis And Forecasting Using Python Leverage Cloud Platforms With Azure Time Series Insights And Aws Forecast Components For Time Series Analysis And Forecasting With Deep Learning Modeling Using Python


Ultimate Enterprise Data Analysis And Forecasting Using Python Leverage Cloud Platforms With Azure Time Series Insights And Aws Forecast Components For Time Series Analysis And Forecasting With Deep Learning Modeling Using Python
DOWNLOAD
Author : Shanthababu Pandian
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2023-12-28

Ultimate Enterprise Data Analysis And Forecasting Using Python Leverage Cloud Platforms With Azure Time Series Insights And Aws Forecast Components For Time Series Analysis And Forecasting With Deep Learning Modeling Using Python written by Shanthababu Pandian and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-28 with Computers categories.


Practical Approaches to Time Series Analysis and Forecasting using Python for Informed Decision-Making Key Features ● Comprehensive Resource for Python-Based Time Series Analysis and Forecasting. ● Delve into real-world applications with industry-specific case studies. ● Extract valuable insights by solving time series challenges across various sectors. ● Understand the significance of Azure Time Series Insights and AWS Forecast components. ● Practical insights into leveraging cloud platforms for efficient time series forecasting. Book Description Embark on a transformative journey through the intricacies of time series analysis and forecasting with this comprehensive handbook. Beginning with the essential packages for data science and machine learning projects you will delve into Python's prowess for efficient time series data analysis, exploring the core components and real-world applications across various industries through compelling use-case studies. From understanding classical models like AR, MA, ARMA, and ARIMA to exploring advanced techniques such as exponential smoothing and ETS methods, this guide ensures a deep understanding of the subject. It will help you navigate the complexities of vector autoregression (VAR, VMA, VARMA) and elevate your skills with a deep dive into deep learning techniques for time series analysis. By the end of this book, you will be able to harness the capabilities of Azure Time Series Insights and explore the cutting-edge AWS Forecast components, unlocking the cloud's power for advanced and scalable time series forecasting. What you will learn ● Explore Time Series Data Analysis and Forecasting, covering components and significance. ● Gain a practical understanding through hands-on examples and real-world case studies. ● Master Time Series Models (AR, MA, ARMA, ARIMA, VAR, VMA, VARMA) with executable samples. ● Delve into Deep Learning for Time Series Analysis, demystified with classical examples. ● Actively engage with Azure Time Series Insights and AWS Forecast components for a contemporary perspective. Table of Contents 1. Introduction to Python and its key packages for DS and ML Projects 2. Python for Time Series Data Analysis 3. Time Series Analysis and its Components 4. Time Series Analysis and Forecasting Opportunities in Various Industries 5. Exploring various aspects of Time Series Analysis and Forecasting 6. Exploring Time Series Models - AR, MA, ARMA, and ARIMA 7. Understanding Exponential Smoothing and ETS Methods in TSA 8. Exploring Vector Autoregression and its Subsets (VAR, VMA, and VARMA) 9. Deep Learning for Time Series Analysis and Forecasting 10. Azure Time Series Insights 11. AWS Forecast Index



Ultimate Enterprise Data Analysis And Forecasting Using Python Leverage Cloud Platforms With Azure Time Series Insights And Aws Forecast Components For Time Series Analysis And Forecasting With Deep Learning Modeling Using Python


Ultimate Enterprise Data Analysis And Forecasting Using Python Leverage Cloud Platforms With Azure Time Series Insights And Aws Forecast Components For Time Series Analysis And Forecasting With Deep Learning Modeling Using Python
DOWNLOAD
Author : Shanthababu Pandian
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2023-12-28

Ultimate Enterprise Data Analysis And Forecasting Using Python Leverage Cloud Platforms With Azure Time Series Insights And Aws Forecast Components For Time Series Analysis And Forecasting With Deep Learning Modeling Using Python written by Shanthababu Pandian and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-28 with Computers categories.


Practical Approaches to Time Series Analysis and Forecasting using Python for Informed Decision-Making Key Features ● Comprehensive Resource for Python-Based Time Series Analysis and Forecasting. ● Delve into real-world applications with industry-specific case studies. ● Extract valuable insights by solving time series challenges across various sectors. ● Understand the significance of Azure Time Series Insights and AWS Forecast components. ● Practical insights into leveraging cloud platforms for efficient time series forecasting. Book Description Embark on a transformative journey through the intricacies of time series analysis and forecasting with this comprehensive handbook. Beginning with the essential packages for data science and machine learning projects you will delve into Python's prowess for efficient time series data analysis, exploring the core components and real-world applications across various industries through compelling use-case studies. From understanding classical models like AR, MA, ARMA, and ARIMA to exploring advanced techniques such as exponential smoothing and ETS methods, this guide ensures a deep understanding of the subject. It will help you navigate the complexities of vector autoregression (VAR, VMA, VARMA) and elevate your skills with a deep dive into deep learning techniques for time series analysis. By the end of this book, you will be able to harness the capabilities of Azure Time Series Insights and explore the cutting-edge AWS Forecast components, unlocking the cloud's power for advanced and scalable time series forecasting. What you will learn ● Explore Time Series Data Analysis and Forecasting, covering components and significance. ● Gain a practical understanding through hands-on examples and real-world case studies. ● Master Time Series Models (AR, MA, ARMA, ARIMA, VAR, VMA, VARMA) with executable samples. ● Delve into Deep Learning for Time Series Analysis, demystified with classical examples. ● Actively engage with Azure Time Series Insights and AWS Forecast components for a contemporary perspective. Table of Contents 1. Introduction to Python and its key packages for DS and ML Projects 2. Python for Time Series Data Analysis 3. Time Series Analysis and its Components 4. Time Series Analysis and Forecasting Opportunities in Various Industries 5. Exploring various aspects of Time Series Analysis and Forecasting 6. Exploring Time Series Models - AR, MA, ARMA, and ARIMA 7. Understanding Exponential Smoothing and ETS Methods in TSA 8. Exploring Vector Autoregression and its Subsets (VAR, VMA, and VARMA) 9. Deep Learning for Time Series Analysis and Forecasting 10. Azure Time Series Insights 11. AWS Forecast Index



Ultimate Enterprise Data Analysis And Forecasting Using Python


Ultimate Enterprise Data Analysis And Forecasting Using Python
DOWNLOAD
Author : Shanthababu Pandian
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2023-12-28

Ultimate Enterprise Data Analysis And Forecasting Using Python written by Shanthababu Pandian and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-28 with Computers categories.


Practical Approaches to Time Series Analysis and Forecasting using Python for Informed Decision-Making KEY FEATURES ● Comprehensive Resource for Python-Based Time Series Analysis and Forecasting. ● Delve into real-world applications with industry-specific case studies. ● Extract valuable insights by solving time series challenges across various sectors. ● Understand the significance of Azure Time Series Insights and AWS Forecast components. ● Practical insights into leveraging cloud platforms for efficient time series forecasting. DESCRIPTION Embark on a transformative journey through the intricacies of time series analysis and forecasting with this comprehensive handbook. Beginning with the essential packages for data science and machine learning projects you will delve into Python's prowess for efficient time series data analysis, exploring the core components and real-world applications across various industries through compelling use-case studies. From understanding classical models like AR, MA, ARMA, and ARIMA to exploring advanced techniques such as exponential smoothing and ETS methods, this guide ensures a deep understanding of the subject. It will help you navigate the complexities of vector autoregression (VAR, VMA, VARMA) and elevate your skills with a deep dive into deep learning techniques for time series analysis. By the end of this book, you will be able to harness the capabilities of Azure Time Series Insights and explore the cutting-edge AWS Forecast components, unlocking the cloud's power for advanced and scalable time series forecasting. WHAT WILL YOU LEARN ● Explore Time Series Data Analysis and Forecasting, covering components and significance. ● Gain a practical understanding through hands-on examples and real-world case studies. ● Master Time Series Models (AR, MA, ARMA, ARIMA, VAR, VMA, VARMA) with executable samples. ● Delve into Deep Learning for Time Series Analysis, demystified with classical examples. ● Actively engage with Azure Time Series Insights and AWS Forecast components for a contemporary perspective. WHO IS THIS BOOK FOR? This book caters to beginners, intermediates, and practitioners in data-related fields such as Data Analysts, Data Scientists, and Machine Learning Engineers, as well as those venturing into Time Series Analysis and Forecasting. It assumes readers have a foundational understanding of programming languages (C, C++, Python), data structures, statistics, and visualization concepts. With a focus on specific projects, it also functions as a quick reference for advanced users. TABLE OF CONTENTS 1. Introduction to Python and its key packages for DS and ML Projects 2. Python for Time Series Data Analysis 3. Time Series Analysis and its Components 4. Time Series Analysis and Forecasting Opportunities in Various Industries 5. Exploring various aspects of Time Series Analysis and Forecasting 6. Exploring Time Series Models - AR, MA, ARMA, and ARIMA 7. Understanding Exponential Smoothing and ETS Methods in TSA 8. Exploring Vector Autoregression and its Subsets (VAR, VMA, and VARMA) 9. Deep Learning for Time Series Analysis and Forecasting 10. Azure Time Series Insights 11. AWSForecast Index



Modern Time Series Forecasting With Python


Modern Time Series Forecasting With Python
DOWNLOAD
Author : Manu Joseph
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-11-24

Modern Time Series Forecasting With Python written by Manu Joseph and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-24 with Computers categories.


Build real-world time series forecasting systems which scale to millions of time series by applying modern machine learning and deep learning concepts Key Features Explore industry-tested machine learning techniques used to forecast millions of time series Get started with the revolutionary paradigm of global forecasting models Get to grips with new concepts by applying them to real-world datasets of energy forecasting Book DescriptionWe live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML. This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You’ll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you’ll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability. By the end of this book, you’ll be able to build world-class time series forecasting systems and tackle problems in the real world.What you will learn Find out how to manipulate and visualize time series data like a pro Set strong baselines with popular models such as ARIMA Discover how time series forecasting can be cast as regression Engineer features for machine learning models for forecasting Explore the exciting world of ensembling and stacking models Get to grips with the global forecasting paradigm Understand and apply state-of-the-art DL models such as N-BEATS and Autoformer Explore multi-step forecasting and cross-validation strategies Who this book is for The book is for data scientists, data analysts, machine learning engineers, and Python developers who want to build industry-ready time series models. Since the book explains most concepts from the ground up, basic proficiency in Python is all you need. Prior understanding of machine learning or forecasting will help speed up your learning. For experienced machine learning and forecasting practitioners, this book has a lot to offer in terms of advanced techniques and traversing the latest research frontiers in time series forecasting.



Time Series Analysis With Python Cookbook


Time Series Analysis With Python Cookbook
DOWNLOAD
Author : Tarek A. Atwan
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-06-30

Time Series Analysis With Python Cookbook written by Tarek A. Atwan and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-30 with Computers categories.


Perform time series analysis and forecasting confidently with this Python code bank and reference manual Key Features • Explore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithms • Learn different techniques for evaluating, diagnosing, and optimizing your models • Work with a variety of complex data with trends, multiple seasonal patterns, and irregularities Book Description Time series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting. This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch. Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book. What you will learn • Understand what makes time series data different from other data • Apply various imputation and interpolation strategies for missing data • Implement different models for univariate and multivariate time series • Use different deep learning libraries such as TensorFlow, Keras, and PyTorch • Plot interactive time series visualizations using hvPlot • Explore state-space models and the unobserved components model (UCM) • Detect anomalies using statistical and machine learning methods • Forecast complex time series with multiple seasonal patterns Who this book is for This book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.



Time Series Analysis And Forecasting Using Python R


Time Series Analysis And Forecasting Using Python R
DOWNLOAD
Author : Jeffrey Strickland
language : en
Publisher:
Release Date : 2020-11-28

Time Series Analysis And Forecasting Using Python R written by Jeffrey Strickland and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-28 with categories.


This book full-color textbook assumes a basic understanding of statistics and mathematical or statistical modeling. Although a little programming experience would be nice, but it is not required. We use current real-world data, like COVID-19, to motivate times series analysis have three thread problems that appear in nearly every chapter: "Got Milk?", "Got a Job?" and "Where's the Beef?" Chapter 1: Loading data in the R-Studio and Jupyter Notebook environments. Chapter 2: Components of a times series and decomposition Chapter 3: Moving averages (MAs) and COVID-19 Chapter 4: Simple exponential smoothing (SES), Holt's and Holt-Winter's double and triple exponential smoothing Chapter 5: Python programming in Jupyter Notebook for the concepts covered in Chapters 2, 3 and 4 Chapter 6: Stationarity and differencing, including unit root tests. Chapter 7: ARIMA and SARMIA (seasonal) modeling and forecast development Chapter 8: ARIMA modeling using Python Chapter 9: Structural models and analysis using unobserved component models (UCMs) Chapter 10: Advanced time series analysis, including time-series interventions, exogenous regressors, and vector autoregressive (VAR) processes.



Mastering Time Series Analysis And Forecasting With Python Bridging Theory And Practice Through Insights Techniques And Tools For Effective Time Series Analysis In Python


Mastering Time Series Analysis And Forecasting With Python Bridging Theory And Practice Through Insights Techniques And Tools For Effective Time Series Analysis In Python
DOWNLOAD
Author : Sulekha Aloorravi
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2024-03-26

Mastering Time Series Analysis And Forecasting With Python Bridging Theory And Practice Through Insights Techniques And Tools For Effective Time Series Analysis In Python written by Sulekha Aloorravi and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-26 with Computers categories.


Decode the language of time with Python. Discover powerful techniques to analyze, forecast, and innovate. Key Features ● Dive into time series analysis fundamentals, progressing to advanced Python techniques. ● Gain practical expertise with real-world datasets and hands-on examples. ● Strengthen skills with code snippets, exercises, and projects for deeper understanding. Book Description "Mastering Time Series Analysis and Forecasting with Python" is an essential handbook tailored for those seeking to harness the power of time series data in their work. The book begins with foundational concepts and seamlessly guides readers through Python libraries such as Pandas, NumPy, and Plotly for effective data manipulation, visualization, and exploration. Offering pragmatic insights, it enables adept visualization, pattern recognition, and anomaly detection. Advanced discussions cover feature engineering and a spectrum of forecasting methodologies, including machine learning and deep learning techniques such as ARIMA, LSTM, and CNN. Additionally, the book covers multivariate and multiple time series forecasting, providing readers with a comprehensive understanding of advanced modeling techniques and their applications across diverse domains. Readers develop expertise in crafting precise predictive models and addressing real-world complexities. Complete with illustrative examples, code snippets, and hands-on exercises, this manual empowers readers to excel, make informed decisions, and derive optimal value from time series data. What you will learn ● Understand the fundamentals of time series data, including temporal patterns, trends, and seasonality. ● Proficiently utilize Python libraries such as pandas, NumPy, and matplotlib for efficient data manipulation and visualization. ● Conduct exploratory analysis of time series data, including identifying patterns, detecting anomalies, and extracting meaningful features. ● Build accurate and reliable predictive models using a variety of machine learning and deep learning techniques, including ARIMA, LSTM, and CNN. ● Perform multivariate and multiple time series forecasting, allowing for more comprehensive analysis and prediction across diverse datasets. ● Evaluate model performance using a range of metrics and validation techniques, ensuring the reliability and robustness of predictive models. Table of Contents 1. Introduction to Time Series 2. Overview of Time Series Libraries in Python 3. Visualization of Time Series Data 4. Exploratory Analysis of Time Series Data 5. Feature Engineering on Time Series 6. Time Series Forecasting – ML Approach Part 1 7. Time Series Forecasting – ML Approach Part 2 8. Time Series Forecasting - DL Approach 9. Multivariate Time Series, Metrics, and Validation Index



Time Series Forecasting In Python


Time Series Forecasting In Python
DOWNLOAD
Author : Marco Peixeiro
language : en
Publisher: Simon and Schuster
Release Date : 2022-11-15

Time Series Forecasting In Python written by Marco Peixeiro and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-15 with Computers categories.


Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting. In Time Series Forecasting in Python you will learn how to: Recognize a time series forecasting problem and build a performant predictive model Create univariate forecasting models that account for seasonal effects and external variables Build multivariate forecasting models to predict many time series at once Leverage large datasets by using deep learning for forecasting time series Automate the forecasting process Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You’ll explore interesting real-world datasets like Google’s daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow. About the technology You can predict the future—with a little help from Python, deep learning, and time series data! Time series forecasting is a technique for modeling time-centric data to identify upcoming events. New Python libraries and powerful deep learning tools make accurate time series forecasts easier than ever before. About the book Time Series Forecasting in Python teaches you how to get immediate, meaningful predictions from time-based data such as logs, customer analytics, and other event streams. In this accessible book, you’ll learn statistical and deep learning methods for time series forecasting, fully demonstrated with annotated Python code. Develop your skills with projects like predicting the future volume of drug prescriptions, and you’ll soon be ready to build your own accurate, insightful forecasts. What's inside Create models for seasonal effects and external variables Multivariate forecasting models to predict multiple time series Deep learning for large datasets Automate the forecasting process About the reader For data scientists familiar with Python and TensorFlow. About the author Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada’s largest banks. Table of Contents PART 1 TIME WAITS FOR NO ONE 1 Understanding time series forecasting 2 A naive prediction of the future 3 Going on a random walk PART 2 FORECASTING WITH STATISTICAL MODELS 4 Modeling a moving average process 5 Modeling an autoregressive process 6 Modeling complex time series 7 Forecasting non-stationary time series 8 Accounting for seasonality 9 Adding external variables to our model 10 Forecasting multiple time series 11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia PART 3 LARGE-SCALE FORECASTING WITH DEEP LEARNING 12 Introducing deep learning for time series forecasting 13 Data windowing and creating baselines for deep learning 14 Baby steps with deep learning 15 Remembering the past with LSTM 16 Filtering a time series with CNN 17 Using predictions to make more predictions 18 Capstone: Forecasting the electric power consumption of a household PART 4 AUTOMATING FORECASTING AT SCALE 19 Automating time series forecasting with Prophet 20 Capstone: Forecasting the monthly average retail price of steak in Canada 21 Going above and beyond



Modern Time Series Forecasting With Python


Modern Time Series Forecasting With Python
DOWNLOAD
Author : Manu Joseph
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-10-31

Modern Time Series Forecasting With Python written by Manu Joseph and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-31 with Computers categories.


Learn traditional and cutting-edge machine learning (ML) and deep learning techniques and best practices for time series forecasting, including global forecasting models, conformal prediction, and transformer architectures Key Features Apply ML and global models to improve forecasting accuracy through practical examples Enhance your time series toolkit by using deep learning models, including RNNs, transformers, and N-BEATS Learn probabilistic forecasting with conformal prediction, Monte Carlo dropout, and quantile regressions Purchase of the print or Kindle book includes a free eBook in PDF format Book Description Predicting the future, whether it's market trends, energy demand, or website traffic, has never been more crucial. This practical, hands-on guide empowers you to build and deploy powerful time series forecasting models. Whether you’re working with traditional statistical methods or cutting-edge deep learning architectures, this book provides structured learning and best practices for both. Starting with the basics, this data science book introduces fundamental time series concepts, such as ARIMA and exponential smoothing, before gradually progressing to advanced topics, such as machine learning for time series, deep neural networks, and transformers. As part of your fundamentals training, you’ll learn preprocessing, feature engineering, and model evaluation. As you progress, you’ll also explore global forecasting models, ensemble methods, and probabilistic forecasting techniques. This new edition goes deeper into transformer architectures and probabilistic forecasting, including new content on the latest time series models, conformal prediction, and hierarchical forecasting. Whether you seek advanced deep learning insights or specialized architecture implementations, this edition provides practical strategies and new content to elevate your forecasting skills. What you will learn Build machine learning models for regression-based time series forecasting Apply powerful feature engineering techniques to enhance prediction accuracy Tackle common challenges like non-stationarity and seasonality Combine multiple forecasts using ensembling and stacking for superior results Explore cutting-edge advancements in probabilistic forecasting and handle intermittent or sparse time series Evaluate and validate your forecasts using best practices and statistical metrics Who this book is for This book is ideal for data scientists, financial analysts, quantitative analysts, machine learning engineers, and researchers who need to model time-dependent data across industries, such as finance, energy, meteorology, risk analysis, and retail. Whether you are a professional looking to apply cutting-edge models to real-world problems or a student aiming to build a strong foundation in time series analysis and forecasting, this book will provide the tools and techniques you need. Familiarity with Python and basic machine learning concepts is recommended.



Deep Time Series Forecasting With Python


Deep Time Series Forecasting With Python
DOWNLOAD
Author : N. Lewis
language : en
Publisher:
Release Date : 2016-12-11

Deep Time Series Forecasting With Python written by N. Lewis and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-11 with categories.


Master Deep Time Series Forecasting with Python! Deep Time Series Forecasting with Python takes you on a gentle, fun and unhurried practical journey to creating deep neural network models for time series forecasting with Python. It uses plain language rather than mathematics; And is designed for working professionals, office workers, economists, business analysts and computer users who want to try deep learning on their own time series data using Python. QUICK AND EASY: Using plain language, this book offers a simple, intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using Python. Examples are clearly described and can be typed directly into Python as printed on the page. NO EXPERIENCE? I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to see how to use deep learning for time series forecasting explained in plain language, and try it out for yourself. THIS BOOK IS FOR YOU IF YOU WANT: Explanations rather than mathematical derivation Real world applications that make sense. Illustrations to deepen your understanding. Worked examples you can easily follow and immediately implement. Ideas you can actually use and try on your own data. CUT LEARNING TIME IN HALF!: This guide was written for people who want to get up to speed as soon as possible. Through a simple to follow process you will learn how to build deep time series forecasting models in the minimum amount of time using Python. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful business applications. YOU'LL LEARN HOW TO: Unleash the power of Long Short-Term Memory Neural Networks . Develop hands on skills using the Gated Recurrent Unit Neural Network. Design successful applications with Recurrent Neural Networks. Deploy Nonlinear Auto-regressive Network with Exogenous Inputs.. Adapt Deep Neural Networks for Time Series Forecasting. Master strategies to build superior Time Series Models. Everything you need to get started is contained within this book. Deep Time series Forecasting with Python is your very own hands on practical, tactical, easy to follow guide to mastery. Buy this book today and accelerate your progress!