[PDF] Ultimate Parallel And Distributed Computing With Julia For Data Science Excel In Data Analysis Statistical Modeling And Machine Learning By Leveraging Mlbase Jl And Mlj Jl To Optimize Workflows - eBooks Review

Ultimate Parallel And Distributed Computing With Julia For Data Science Excel In Data Analysis Statistical Modeling And Machine Learning By Leveraging Mlbase Jl And Mlj Jl To Optimize Workflows


Ultimate Parallel And Distributed Computing With Julia For Data Science Excel In Data Analysis Statistical Modeling And Machine Learning By Leveraging Mlbase Jl And Mlj Jl To Optimize Workflows
DOWNLOAD

Download Ultimate Parallel And Distributed Computing With Julia For Data Science Excel In Data Analysis Statistical Modeling And Machine Learning By Leveraging Mlbase Jl And Mlj Jl To Optimize Workflows PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ultimate Parallel And Distributed Computing With Julia For Data Science Excel In Data Analysis Statistical Modeling And Machine Learning By Leveraging Mlbase Jl And Mlj Jl To Optimize Workflows book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Ultimate Parallel And Distributed Computing With Julia For Data Science


Ultimate Parallel And Distributed Computing With Julia For Data Science
DOWNLOAD
Author : Nabanita Dash
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2024-01-03

Ultimate Parallel And Distributed Computing With Julia For Data Science written by Nabanita Dash and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-03 with Computers categories.


Unleash Julia’s power: Code Your Data Stories, Shape Machine Intelligence! KEY FEATURES ● Comprehensive Learning Journey from fundamentals of Julia ML to advanced techniques. ● Immersive practical approach with real-world examples, exercises, and scenarios, ensuring immediate application of acquired knowledge. ● Delve into the unique features of Julia and unlock its true potential to excel in modern ML applications. DESCRIPTION This book takes you through a step-by-step learning journey, starting with the essentials of Julia's syntax, variables, and functions. You'll unlock the power of efficient data handling by leveraging Julia arrays and DataFrames.jl for insightful analysis. Develop expertise in both basic and advanced statistical models, providing a robust toolkit for deriving meaningful data-driven insights. The journey continues with machine learning proficiency, where you'll implement algorithms confidently using MLJ.jl and MLBase.jl, paving the way for advanced data-driven solutions. Explore the realm of Bayesian inference skills through practical applications using Turing.jl, enhancing your ability to extract valuable insights. The book also introduces crucial Julia packages such as Plots.jl for visualizing data and results. The handbook culminates in optimizing workflows with Julia's parallel and distributed computing capabilities, ensuring efficient and scalable data processing using Distributions.jl, Distributed.jl and SharedArrays.jl. This comprehensive guide equips you with the knowledge and practical insights needed to excel in the dynamic field of data science and machine learning. WHAT WILL YOU LEARN ● Master Julia ML Basics to gain a deep understanding of Julia's syntax, variables, and functions. ● Efficient Data Handling with Julia arrays and DataFrames for streamlined and insightful analysis. ● Develop expertise in both basic and advanced statistical models for informed decision-making through Statistical Modeling. ● Achieve Machine Learning Proficiency by confidently implementing ML algorithms using MLJ.jl and MLBase.jl. ● Apply Bayesian Inference Skills with Turing.jl for advanced modeling techniques. ● Optimize workflows using Julia's Parallel Processing Capabilities and Distributed Computing for efficient and scalable data processing. WHO IS THIS BOOK FOR? This book is designed to be a comprehensive and accessible companion for anyone eager to excel in machine learning and data analysis using Julia. Whether you are a novice or an experienced practitioner, the knowledge and skills imparted within these pages will empower you to navigate the complexities of modern data science with Julia. TABLE OF CONTENTS 1. Julia In Data Science Arena 2. Getting Started with Julia 3. Features Assisting Scaling ML Projects 4. Data Structures in Julia 5. Working With Datasets In Julia 6. Basics of Statistics 7. Probability Data Distributions 8. Framing Data in Julia 9. Working on Data in DataFrames 10. Visualizing Data in Julia 11. Introducing Machine Learning in Julia 12. Data and Models 13. Bayesian Statistics and Modeling 14. Parallel Computation in Julia 15. Distributed Computation in Julia Index



Ultimate Parallel And Distributed Computing With Julia For Data Science Excel In Data Analysis Statistical Modeling And Machine Learning By Leveraging Mlbase Jl And Mlj Jl To Optimize Workflows


Ultimate Parallel And Distributed Computing With Julia For Data Science Excel In Data Analysis Statistical Modeling And Machine Learning By Leveraging Mlbase Jl And Mlj Jl To Optimize Workflows
DOWNLOAD
Author : Nabanita Dash
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2024-01-03

Ultimate Parallel And Distributed Computing With Julia For Data Science Excel In Data Analysis Statistical Modeling And Machine Learning By Leveraging Mlbase Jl And Mlj Jl To Optimize Workflows written by Nabanita Dash and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-03 with Computers categories.


Unleash Julia’s power: Code Your Data Stories, Shape Machine Intelligence! Key Features ● Comprehensive Learning Journey from fundamentals of Julia ML to advanced techniques. ● Immersive practical approach with real-world examples, exercises, and scenarios, ensuring immediate application of acquired knowledge. ● Delve into the unique features of Julia and unlock its true potential to excel in modern ML applications. Book Description This book takes you through a step-by-step learning journey, starting with the essentials of Julia's syntax, variables, and functions. You'll unlock the power of efficient data handling by leveraging Julia arrays and DataFrames.jl for insightful analysis. Develop expertise in both basic and advanced statistical models, providing a robust toolkit for deriving meaningful data-driven insights. The journey continues with machine learning proficiency, where you'll implement algorithms confidently using MLJ.jl and MLBase.jl, paving the way for advanced data-driven solutions. Explore the realm of Bayesian inference skills through practical applications using Turing.jl, enhancing your ability to extract valuable insights. The book also introduces crucial Julia packages such as Plots.jl for visualizing data and results. The handbook culminates in optimizing workflows with Julia's parallel and distributed computing capabilities, ensuring efficient and scalable data processing using Distributions.jl, Distributed.jl and SharedArrays.jl. This comprehensive guide equips you with the knowledge and practical insights needed to excel in the dynamic field of data science and machine learning. What you will learn● Master Julia ML Basics to gain a deep understanding of Julia's syntax, variables, and functions. ● Efficient Data Handling with Julia arrays and DataFrames for streamlined and insightful analysis. ● Develop expertise in both basic and advanced statistical models for informed decision-making through Statistical Modeling. ● Achieve Machine Learning Proficiency by confidently implementing ML algorithms using MLJ.jl and MLBase.jl. ● Apply Bayesian Inference Skills with Turing.jl for advanced modeling techniques. ● Optimize workflows using Julia's Parallel Processing Capabilities and Distributed Computing for efficient and scalable data processing. Table of Contents 1. Julia In Data Science Arena 2. Getting Started with Julia 3. Features Assisting Scaling ML Projects 4. Data Structures in Julia 5. Working With Datasets In Julia 6. Basics of Statistics 7. Probability Data Distributions 8. Framing Data in Julia 9. Working on Data in DataFrames 10. Visualizing Data in Julia 11. Introducing Machine Learning in Julia 12. Data and Models 13. Bayesian Statistics and Modeling 14. Parallel Computation in Julia 15. Distributed Computation in Julia Index



Statistics With Julia


Statistics With Julia
DOWNLOAD
Author : Yoni Nazarathy
language : en
Publisher: Springer Nature
Release Date : 2021-09-04

Statistics With Julia written by Yoni Nazarathy and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-04 with Computers categories.


This monograph uses the Julia language to guide the reader through an exploration of the fundamental concepts of probability and statistics, all with a view of mastering machine learning, data science, and artificial intelligence. The text does not require any prior statistical knowledge and only assumes a basic understanding of programming and mathematical notation. It is accessible to practitioners and researchers in data science, machine learning, bio-statistics, finance, or engineering who may wish to solidify their knowledge of probability and statistics. The book progresses through ten independent chapters starting with an introduction of Julia, and moving through basic probability, distributions, statistical inference, regression analysis, machine learning methods, and the use of Monte Carlo simulation for dynamic stochastic models. Ultimately this text introduces the Julia programming language as a computational tool, uniquely addressing end-users rather than developers. It makes heavy use of over 200 code examples to illustrate dozens of key statistical concepts. The Julia code, written in a simple format with parameters that can be easily modified, is also available for download from the book’s associated GitHub repository online. See what co-creators of the Julia language are saying about the book: Professor Alan Edelman, MIT: With “Statistics with Julia”, Yoni and Hayden have written an easy to read, well organized, modern introduction to statistics. The code may be looked at, and understood on the static pages of a book, or even better, when running live on a computer. Everything you need is here in one nicely written self-contained reference. Dr. Viral Shah, CEO of Julia Computing: Yoni and Hayden provide a modern way to learn statistics with the Julia programming language. This book has been perfected through iteration over several semesters in the classroom. It prepares the reader with two complementary skills - statistical reasoning with hands on experience and working with large datasets through training in Julia.



Julia For Data Science


Julia For Data Science
DOWNLOAD
Author : Zacharias Voulgaris
language : en
Publisher:
Release Date : 2016

Julia For Data Science written by Zacharias Voulgaris and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Application software categories.


After covering the importance of Julia to the data science community and several essential data science principles, we start with the basics including how to install Julia and its powerful libraries. Many examples are provided as we illustrate how to leverage each Julia command, dataset, and function. Specialized script packages are introduced and described. Hands-on problems representative of those commonly encountered throughout the data science pipeline are provided, and we guide you in the use of Julia in solving them using published datasets. Many of these scenarios make use of existing packages and built-in functions, as we cover: An overview of the data science pipeline along with an example illustrating the key points, implemented in Julia Options for Julia IDEs Programming structures and functions Engineering tasks, such as importing, cleaning, formatting and storing data, as well as performing data preprocessing Data visualization and some simple yet powerful statistics for data exploration purposes Dimensionality reduction and feature evaluation Machine learning methods, ranging from unsupervised (different types of clustering) to supervised ones (decision trees, random forests, basic neural networks, regression trees, and Extreme Learning Machines) Graph analysis including pinpointing the connections among the various entities and how they can be mined for useful insights. Each chapter concludes with a series of questions and exercises to reinforce what you learned. The last chapter of the book will guide you in creating a data science application from scratch using Julia.



Think Julia


Think Julia
DOWNLOAD
Author : Ben Lauwens
language : en
Publisher: O'Reilly Media
Release Date : 2019-04-05

Think Julia written by Ben Lauwens and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-05 with Computers categories.


If you’re just learning how to program, Julia is an excellent JIT-compiled, dynamically typed language with a clean syntax. This hands-on guide uses Julia 1.0 to walk you through programming one step at a time, beginning with basic programming concepts before moving on to more advanced capabilities, such as creating new types and multiple dispatch. Designed from the beginning for high performance, Julia is a general-purpose language ideal for not only numerical analysis and computational science but also web programming and scripting. Through exercises in each chapter, you’ll try out programming concepts as you learn them. Think Julia is perfect for students at the high school or college level as well as self-learners and professionals who need to learn programming basics. Start with the basics, including language syntax and semantics Get a clear definition of each programming concept Learn about values, variables, statements, functions, and data structures in a logical progression Discover how to work with files and databases Understand types, methods, and multiple dispatch Use debugging techniques to fix syntax, runtime, and semantic errors Explore interface design and data structures through case studies



Julia Programming For Operations Research


Julia Programming For Operations Research
DOWNLOAD
Author : Changhyun Kwon
language : en
Publisher: Changhyun Kwon
Release Date : 2019-03-03

Julia Programming For Operations Research written by Changhyun Kwon and has been published by Changhyun Kwon this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-03 with Technology & Engineering categories.


Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia



Algorithms For Optimization


Algorithms For Optimization
DOWNLOAD
Author : Mykel J. Kochenderfer
language : en
Publisher: MIT Press
Release Date : 2019-03-12

Algorithms For Optimization written by Mykel J. Kochenderfer and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-12 with Computers categories.


A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.



Hands On Design Patterns And Best Practices With Julia


Hands On Design Patterns And Best Practices With Julia
DOWNLOAD
Author : Tom Kwong
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-17

Hands On Design Patterns And Best Practices With Julia written by Tom Kwong and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-17 with Computers categories.


Design and develop high-performance, reusable, and maintainable applications using traditional and modern Julia patterns with this comprehensive guide Key FeaturesExplore useful design patterns along with object-oriented programming in Julia 1.0Implement macros and metaprogramming techniques to make your code faster, concise, and efficientDevelop the skills necessary to implement design patterns for creating robust and maintainable applicationsBook Description Design patterns are fundamental techniques for developing reusable and maintainable code. They provide a set of proven solutions that allow developers to solve problems in software development quickly. This book will demonstrate how to leverage design patterns with real-world applications. Starting with an overview of design patterns and best practices in application design, you'll learn about some of the most fundamental Julia features such as modules, data types, functions/interfaces, and metaprogramming. You'll then get to grips with the modern Julia design patterns for building large-scale applications with a focus on performance, reusability, robustness, and maintainability. The book also covers anti-patterns and how to avoid common mistakes and pitfalls in development. You'll see how traditional object-oriented patterns can be implemented differently and more effectively in Julia. Finally, you'll explore various use cases and examples, such as how expert Julia developers use design patterns in their open source packages. By the end of this Julia programming book, you'll have learned methods to improve software design, extensibility, and reusability, and be able to use design patterns efficiently to overcome common challenges in software development. What you will learnMaster the Julia language features that are key to developing large-scale software applicationsDiscover design patterns to improve overall application architecture and designDevelop reusable programs that are modular, extendable, performant, and easy to maintainWeigh up the pros and cons of using different design patterns for use casesExplore methods for transitioning from object-oriented programming to using equivalent or more advanced Julia techniquesWho this book is for This book is for beginner to intermediate-level Julia programmers who want to enhance their skills in designing and developing large-scale applications.



Seven More Languages In Seven Weeks


Seven More Languages In Seven Weeks
DOWNLOAD
Author : Bruce A. Tate. Ian Dees. Frederic Daoud. Jack Moffitt
language : en
Publisher:
Release Date :

Seven More Languages In Seven Weeks written by Bruce A. Tate. Ian Dees. Frederic Daoud. Jack Moffitt and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.




Learning Julia


Learning Julia
DOWNLOAD
Author : Anshul Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-11-24

Learning Julia written by Anshul Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-24 with Computers categories.


Learn Julia language for data science and data analytics About This Book Set up Julia's environment and start building simple programs Explore the technical aspects of Julia and its potential when it comes to speed and data processing Write efficient and high-quality code in Julia Who This Book Is For This book allows existing programmers, statisticians and data scientists to learn the Julia and take its advantage while building applications with complex numerical and scientific computations. Basic knowledge of mathematics is needed to understand the various methods that will be used or created in the book to exploit the capabilities for which Julia is made. What You Will Learn Understand Julia's ecosystem and create simple programs Master the type system and create your own types in Julia Understand Julia's type system, annotations, and conversions Define functions and understand meta-programming and multiple dispatch Create graphics and data visualizations using Julia Build programs capable of networking and parallel computation Develop real-world applications and use connections for RDBMS and NoSQL Learn to interact with other programming languages–C and Python—using Julia In Detail Julia is a highly appropriate language for scientific computing, but it comes with all the required capabilities of a general-purpose language. It allows us to achieve C/Fortran-like performance while maintaining the concise syntax of a scripting language such as Python. It is perfect for building high-performance and concurrent applications. From the basics of its syntax to learning built-in object types, this book covers it all. This book shows you how to write effective functions, reduce code redundancies, and improve code reuse. It will be helpful for new programmers who are starting out with Julia to explore its wide and ever-growing package ecosystem and also for experienced developers/statisticians/data scientists who want to add Julia to their skill-set. The book presents the fundamentals of programming in Julia and in-depth informative examples, using a step-by-step approach. You will be taken through concepts and examples such as doing simple mathematical operations, creating loops, metaprogramming, functions, collections, multiple dispatch, and so on. By the end of the book, you will be able to apply your skills in Julia to create and explore applications of any domain. Style and approach This book demonstrates the basics of Julia along with some data structures and testing tools that will give you enough material to get started with the language from an application standpoint.