Ultimate Python Libraries For Data Analysis And Visualization

DOWNLOAD
Download Ultimate Python Libraries For Data Analysis And Visualization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ultimate Python Libraries For Data Analysis And Visualization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Ultimate Python Libraries For Data Analysis And Visualization
DOWNLOAD
Author : Abhinaba Banerjee
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2024-04-04
Ultimate Python Libraries For Data Analysis And Visualization written by Abhinaba Banerjee and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-04 with Computers categories.
Test your Data Analysis skills to its fullest using Python and other no-code tools KEY FEATURES ● Comprehensive coverage of Python libraries such as Pandas, NumPy, Matplotlib, Seaborn, Julius AI for data acquisition, preparation, analysis, and visualization ● Real-world projects and practical applications for hands-on learning ● In-depth exploration of low-code and no-code tools for enhanced productivity DESCRIPTION Ultimate Data Analysis and Visualization with Python is your comprehensive guide to mastering the intricacies of data analysis and visualization using Python. This book serves as your roadmap to unlocking the full potential of Python for extracting insights from data using Pandas, NumPy, Matplotlib, Seaborn, and Julius AI. Starting with the fundamentals of data acquisition, you'll learn essential techniques for gathering and preparing data for analysis. From there, you’ll dive into exploratory data analysis, uncovering patterns and relationships hidden within your datasets. Through step-by-step tutorials, you'll gain proficiency in statistical analysis, time series forecasting, and signal processing, equipping you with the tools to extract actionable insights from any dataset. What sets this book apart is its emphasis on real-world applications. With a series of hands-on projects, you’ll apply your newfound skills to analyze diverse datasets spanning industries such as finance, healthcare, e-commerce, and more. By the end of the book, you'll have the confidence and expertise to tackle any data analysis challenge with Python. To aid your journey, the book includes a handy Python cheat sheet in the appendix, serving as a quick reference guide for common functions and syntax. WHAT WILL YOU LEARN ● Acquire data from various sources using Python, including web scraping, APIs, and databases. ● Clean and prepare datasets for analysis, handling missing values, outliers, and inconsistencies. ● Conduct exploratory data analysis to uncover patterns, trends, and relationships within your data. ● Perform statistical analysis using Python libraries such as NumPy and Pandas, including hypothesis testing and regression analysis. ● Master time series analysis techniques for forecasting future trends and making data-driven decisions. ● Apply signal processing methods to analyze and interpret signals in data, such as audio, image, and sensor data. ● Engage in real-world projects across diverse industries, from finance to healthcare, to reinforce your skills and experience. ● Utilize Python for in-depth analysis of real-world datasets, gaining practical experience and insights. ● Refer to the Python cheat sheet in the appendix for quick access to common functions and syntax, aiding your learning and development. WHO IS THIS BOOK FOR? This book is ideal for beginners, professionals, or students aiming to enhance their careers through hands-on experience in data acquisition, preparation, analysis, time series, and signal processing. Prerequisite knowledge includes basic Python and introductory statistics. Whether starting fresh or seeking to refresh skills, this comprehensive guide helps readers upskill effectively. TABLE OF CONTENTS 1. Introduction to Data Analysis and Data Visualization using Python 2. Data Acquisition 3. Data Cleaning and Preparation 4. Exploratory Data Analysis 5. Statistical Analysis 6. Time Series Analysis and Forecasting 7. Signal Processing 8. Analyzing Real-World Data Sets using Python APPENDIX A Python Cheat Sheet Index
Ultimate Python Libraries For Data Analysis And Visualization Leverage Pandas Numpy Matplotlib Seaborn Julius Ai And No Code Tools For Data Acquisition Visualization And Statistical Analysis
DOWNLOAD
Author : Abhinaba Banerjee
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2024-04-04
Ultimate Python Libraries For Data Analysis And Visualization Leverage Pandas Numpy Matplotlib Seaborn Julius Ai And No Code Tools For Data Acquisition Visualization And Statistical Analysis written by Abhinaba Banerjee and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-04 with Computers categories.
Test your Data Analysis skills to its fullest using Python and other no-code tools Key Features ● Comprehensive coverage of Python libraries such as Pandas, NumPy, Matplotlib, Seaborn, Julius AI for data acquisition, preparation, analysis, and visualization ● Real-world projects and practical applications for hands-on learning ● In-depth exploration of low-code and no-code tools for enhanced productivity Book Description Ultimate Data Analysis and Visualization with Python is your comprehensive guide to mastering the intricacies of data analysis and visualization using Python. This book serves as your roadmap to unlocking the full potential of Python for extracting insights from data using Pandas, NumPy, Matplotlib, Seaborn, and Julius AI. Starting with the fundamentals of data acquisition, you'll learn essential techniques for gathering and preparing data for analysis. From there, you’ll dive into exploratory data analysis, uncovering patterns and relationships hidden within your datasets. Through step-by-step tutorials, you'll gain proficiency in statistical analysis, time series forecasting, and signal processing, equipping you with the tools to extract actionable insights from any dataset. What sets this book apart is its emphasis on real-world applications. With a series of hands-on projects, you’ll apply your newfound skills to analyze diverse datasets spanning industries such as finance, healthcare, e-commerce, and more. By the end of the book, you'll have the confidence and expertise to tackle any data analysis challenge with Python. To aid your journey, the book includes a handy Python cheat sheet in the appendix, serving as a quick reference guide for common functions and syntax. What you will learn ● Acquire data from various sources using Python, including web scraping, APIs, and databases. ● Clean and prepare datasets for analysis, handling missing values, outliers, and inconsistencies. ● Conduct exploratory data analysis to uncover patterns, trends, and relationships within your data. ● Perform statistical analysis using Python libraries such as NumPy and Pandas, including hypothesis testing and regression analysis. ● Master time series analysis techniques for forecasting future trends and making data-driven decisions. ● Apply signal processing methods to analyze and interpret signals in data, such as audio, image, and sensor data. ● Engage in real-world projects across diverse industries, from finance to healthcare, to reinforce your skills and experience. Table of Contents 1. Introduction to Data Analysis and Data Visualization using Python 2. Data Acquisition 3. Data Cleaning and Preparation 4. Exploratory Data Analysis 5. Statistical Analysis 6. Time Series Analysis and Forecasting 7. Signal Processing 8. Analyzing Real-World Data Sets using Python APPENDIX A Python Cheat Sheet Index
Python Data Science Handbook
DOWNLOAD
Author : Jake VanderPlas
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-11-21
Python Data Science Handbook written by Jake VanderPlas and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-21 with Computers categories.
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Ultimate Data Science Programming In Python
DOWNLOAD
Author : Saurabh Chandrakar
language : en
Publisher: BPB Publications
Release Date : 2024-09-25
Ultimate Data Science Programming In Python written by Saurabh Chandrakar and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-25 with Computers categories.
DESCRIPTION In today's data-driven world, the ability to extract meaningful insights from vast datasets is crucial for success in various fields. This ultimate book for mastering open-source libraries of data science in Python equips you with the essential tools and techniques to navigate the ever-evolving field of data analysis and visualization. Discover how to use Python libraries like NumPy, Pandas, and Matplotlib for data manipulation, analysis, and visualization. This book also covers scientific computing with SciPy and integrates ChatGPT to boost your data science workflow. Designed for data scientists, analysts, and beginners, it offers a practical, hands-on approach to mastering data science fundamentals. With real-world applications and exercises, you will turn raw data into actionable insights, gaining a competitive edge. This book covers everything you need, including open-source libraries, Visual Explorer tools, and ChatGPT, making it a one-stop resource for Python-based data science. Readers will gain confidence after going through this book and we assure you that all the minute details have been taken into consideration while delivering the content. After reading, learning, and practicing from this book, we are sure that all IT professionals, novices, or job seekers will be able to work on data science projects thus proving their mettle. KEY FEATURES ● Master key Python libraries like NumPy, Pandas, and Seaborn for effective data analysis and visualization. ● Understand complex data science concepts through simple explanations and practical examples. ● Get hands-on experience with 300+ solved examples to solidify your Python data science skills. WHAT YOU WILL LEARN ● Learn to work with popular IDEs like VS Code and Jupyter Notebook for efficient Python development. ● Master open-source libraries such as NumPy, SciPy, Matplotlib, and Pandas through advanced, real-world examples. ● Utilize automated EDA tools like PyGWalker and AutoViz to simplify complex data analysis. ● Create sophisticated visualizations like heatmaps, FacetGrid, and box plots using Matplotlib and Seaborn. ● Efficiently handle missing data, outliers, and perform filtering, sorting, grouping, and aggregation using Pandas and Polars. WHO THIS BOOK IS FOR This book is ideal for diploma, undergraduate, and postgraduate students from engineering and science fields to programming and software professionals. It is also perfect for data science, ML, and AI engineers looking to expand their expertise in cutting-edge technologies. TABLE OF CONTENTS 1. Environmental Setup for Using Data Science Libraries in Python 2. Exploring Numpy Library for Data Science in Python 3. Exploring Array Manipulations in Numpy 4. Exploring Scipy Library for Data Science in Python 5. Line Plot exploration with Matplotlib Library 6. Charting Data With Various Visuals Using Matplotlib 7. Exploring Pandas Series for Data Science in Python 8. Exploring Pandas Dataframe for Data Science in Python 9. Advanced Dataframe Filtering Techniques 10. Exploring Polars Library for Data Science in Python 11. Exploring Expressions in Polars 12. Exploring Seaborn Library for Data Science in Python 13. Crafting Seaborn Plots: KDE, Line, Violin and Facets 14. Integrating Data Science Libraries with ChatGPT Prompts 15. Exploring Automated EDA Libraries for Machine Learning 16. Case Study Using Python Data Science Libraries
Ultimate Big Data Analytics With Apache Hadoop
DOWNLOAD
Author : Simhadri Govindappa
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2024-09-09
Ultimate Big Data Analytics With Apache Hadoop written by Simhadri Govindappa and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-09 with Computers categories.
TAGLINE Master the Hadoop Ecosystem and Build Scalable Analytics Systems KEY FEATURES ● Explains Hadoop, YARN, MapReduce, and Tez for understanding distributed data processing and resource management. ● Delves into Apache Hive and Apache Spark for their roles in data warehousing, real-time processing, and advanced analytics. ● Provides hands-on guidance for using Python with Hadoop for business intelligence and data analytics. DESCRIPTION In a rapidly evolving Big Data job market projected to grow by 28% through 2026 and with salaries reaching up to $150,000 annually—mastering big data analytics with the Hadoop ecosystem is most sought after for career advancement. The Ultimate Big Data Analytics with Apache Hadoop is an indispensable companion offering in-depth knowledge and practical skills needed to excel in today's data-driven landscape. The book begins laying a strong foundation with an overview of data lakes, data warehouses, and related concepts. It then delves into core Hadoop components such as HDFS, YARN, MapReduce, and Apache Tez, offering a blend of theory and practical exercises. You will gain hands-on experience with query engines like Apache Hive and Apache Spark, as well as file and table formats such as ORC, Parquet, Avro, Iceberg, Hudi, and Delta. Detailed instructions on installing and configuring clusters with Docker are included, along with big data visualization and statistical analysis using Python. Given the growing importance of scalable data pipelines, this book equips data engineers, analysts, and big data professionals with practical skills to set up, manage, and optimize data pipelines, and to apply machine learning techniques effectively. Don’t miss out on the opportunity to become a leader in the big data field to unlock the full potential of big data analytics with Hadoop. WHAT WILL YOU LEARN ● Gain expertise in building and managing large-scale data pipelines with Hadoop, YARN, and MapReduce. ● Master real-time analytics and data processing with Apache Spark’s powerful features. ● Develop skills in using Apache Hive for efficient data warehousing and complex queries. ● Integrate Python for advanced data analysis, visualization, and business intelligence in the Hadoop ecosystem. ● Learn to enhance data storage and processing performance using formats like ORC, Parquet, and Delta. ● Acquire hands-on experience in deploying and managing Hadoop clusters with Docker and Kubernetes. ● Build and deploy machine learning models with tools integrated into the Hadoop ecosystem. WHO IS THIS BOOK FOR? This book is tailored for data engineers, analysts, software developers, data scientists, IT professionals, and engineering students seeking to enhance their skills in big data analytics with Hadoop. Prerequisites include a basic understanding of big data concepts, programming knowledge in Java, Python, or SQL, and basic Linux command line skills. No prior experience with Hadoop is required, but a foundational grasp of data principles and technical proficiency will help readers fully engage with the material. TABLE OF CONTENTS 1. Introduction to Hadoop and ASF 2. Overview of Big Data Analytics 3. Hadoop and YARN MapReduce and Tez 4. Distributed Query Engines: Apache Hive 5. Distributed Query Engines: Apache Spark 6. File Formats and Table Formats (Apache Ice-berg, Hudi, and Delta) 7. Python and the Hadoop Ecosystem for Big Data Analytics - BI 8. Data Science and Machine Learning with Hadoop Ecosystem 9. Introduction to Cloud Computing and Other Apache Projects Index
Ultimate Python For Fintech Solutions Build Modern Financial Applications And Fintech Solutions Using Finance Packages And Blockchain With Python
DOWNLOAD
Author : Bhagvan Kommadi
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2024-07-12
Ultimate Python For Fintech Solutions Build Modern Financial Applications And Fintech Solutions Using Finance Packages And Blockchain With Python written by Bhagvan Kommadi and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-12 with Computers categories.
Creating Next Gen Apps in Finance Key Features● Master the Python libraries and packages essential for financial applications, enabling robust development. ● Utilize Python for developing applications that process financial information, visualize data in diverse formats, and create insightful representations. ● Derive analytical insights from mathematical models integrated into Python applications for data-driven decision-making in finance and fintech. Book DescriptionDive into the dynamic world where finance meets fintech with Python's versatile capabilities in this 'Ultimate Python for Fintech Solutions'.Whether you're aiming to build secure trading platforms, conduct deep statistical analysis, or pioneer next-generation financial technologies, this book quips you with the knowledge, tools, and practical insights to succeed. This book starts with Python's foundational programming techniques, essential for understanding financial principles and laying the groundwork for robust applications. You will learn to build scalable solutions that handle complex financial data with ease by using Python for analysis, forecasting, and data visualization. Next, it moves to explore advanced topics like AI/ML applications tailored for finance, enabling you to unlock predictive insights and streamline decision-making processes. You will discover how Python integrates cutting-edge technologies such as Big Data and Blockchain, to offer innovative solutions for modern fintech challenges. By the end of this expansive book, you will gain the expertise needed to develop sophisticated financial applications, visualize data effectively across desktop and web platforms, and drive innovation in fintech. What you will learn ● Learn to build robust applications tailored for financial analysis, modeling, and fintech solutions using Python. ● Learn to analyze large volumes of financial data, and visualize insights effectively. ● Apply advanced AI/ML techniques to predict trends, optimize financial strategies, and automate decision-making processes. ● Integrate Python with Big Data platforms and Blockchain technologies to work with massive datasets and decentralized financial systems. ● Acquire the knowledge and skills to innovate in the fintech space to address modern financial challenges and opportunities. Table of Contents1. Getting Started on Python Infrastructure and Building Financial Apps 2. Learning Financial Concepts Using Python 3. Data Structures and Algorithms Using Python 4. Object Oriented Programming Using Python 5. Building Simulation and Mathematical Analysis Tools Using Python 6. Stochastic Mathematics and Building Models Using Python 7. Prediction Algorithms Using Python 8. Data Science and Statistical Algorithms Using Python 9. Desktop and Web Charting Using Python 10. AI/ML Apps Using Python 11. Big Data/Blockchain-Based Solutions Using Python 12. Next Generation FinTech Apps Using Python with Financial Singularity Index
Ultimate Pandas For Data Manipulation And Visualization
DOWNLOAD
Author : Tahera Firdose
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2024-06-10
Ultimate Pandas For Data Manipulation And Visualization written by Tahera Firdose and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-10 with Computers categories.
TAGLINE Unlock the power of Data Manipulation with Pandas. KEY FEATURES ● Master Pandas from basics to advanced and its data manipulation techniques. ● Visualize data effectively with Matplotlib and explore data efficiently. ● Learn through hands-on examples and practical real-world use cases. DESCRIPTION Unlock the power of Pandas, the essential Python library for data analysis and manipulation. This comprehensive guide takes you from the basics to advanced techniques, ensuring you master every aspect of pandas. You'll start with an introduction to pandas and data analysis, followed by in-depth explorations of pandas Series and DataFrame, the core data structures. Learn essential skills for data cleaning and filtering, and master grouping and aggregation techniques to summarize and analyze your data sets effectively. Discover how to reshape and pivot data, join and merge multiple datasets, and handle time series analysis. Enhance your data analysis with compelling visualizations using Matplotlib, and apply your knowledge in a real-world scenario by analyzing bank customer churn. Through hands-on examples and practical use cases, this book equips you with the tools to clean, filter, aggregate, reshape, merge, and visualize data effectively, transforming it into actionable insights. WHAT WILL YOU LEARN ● Wrangle data efficiently using Pandas' cleaning, filtering, and transformation techniques. ● Unlock hidden patterns with advanced grouping, joining, and merging operations. ● Master time series analysis with Pandas to extract valuable insights from your data. ● Apply Pandas to real-world scenarios like customer churn analysis and financial modeling. ● Unleash the power of data visualization with Matplotlib and craft compelling charts and graphs. ● Enhance your workflow with essential Pandas optimizations and performance tips. WHO IS THIS BOOK FOR? This book is ideal for aspiring data scientists, analysts, and Python enthusiasts looking to enhance their data manipulation skills using Pandas. Familiarity with Python programming basics and a basic understanding of data structures will greatly benefit readers as they delve into the concepts presented in this book. TABLE OF CONTENTS 1. Introduction to Pandas and Data Analysis 2. Pandas Series 3. Pandas DataFrame 4. Data Cleaning with Pandas 5. Data Filtering with Pandas 6. Grouping and Aggregating Data 7. Reshaping and Pivoting in Pandas 8. Joining and Merging Data in Pandas 9. Introduction to Time Series Analysis in Pandas 10. Visualization Using Matplotlib 11. Analyzing Bank Customer Churn Using Pandas Index
Python For Data Analysis
DOWNLOAD
Author : Andrew Park
language : en
Publisher: Andrew Park
Release Date : 2021-04-22
Python For Data Analysis written by Andrew Park and has been published by Andrew Park this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-22 with categories.
★ 55% OFF for Bookstores! NOW at $41,97 instead of $51,97!Do you want to learn more about Data Analysis and how to master it with Python?Your Customers Will Love This Amazing Guide! Everyone talks about data today. You have probably come across the term "data" more times than you can remember in one day. Data as a concept is so wide. One thing that is true about data is that it can be used to tell a story. The story could be anything from explaining an event to predicting the future. Data is the future. Businesses, governments, organizations, criminals-everyone needs data for some reason. Entities are investing in different data approaches to help them understand their current situation, and use it to prepare for the unknown. The world of technology as we know it is evolving towards an open-source platform where people share ideas freely. This is seen as the first step towards the decentralization of ideas and eliminating unnecessary monopolies. Therefore, the data, tools, and techniques used in the analysis are easily available for anyone to interpret data sets and get relevant explanations. With Python for Data Analysis you will learn about the main steps that are needed to correctly implement Data Analysis and the procedures to help you extract the right insights from the right data. Some of the topics that we will discuss inside include: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis Pandas, Jupyter and PyTorch The 7 Python libraries that make Python one of the best choices for Data Analysis Neural Network How Data Visualization and Matplotlib can help you to understand the data you are working with. Some of the main industries that are using data to improve their business with 14 real-world applications And Much More! While most books focus on how to implement advanced predictive models, this book takes the time to explain the basic concepts and all the necessary steps to correctly implement Data Analysis, including Data Visualization and providing practical examples and simple coding scripts. Don't miss the opportunity to learn more about these topics. Even if you never used Data Analysis, learning it is easier than it looks, you just need the right guidance. This practical guide provides all the knowledge you need in a simple and practical way. Regardless of your previous experience, you will learn the steps of Data Analysis, how to implement them in Python, and the most important real-world applications. Would You Like To Know More? Buy it NOW and Let Your Customers Get Addicted to This Amazing Book!
Interactive Data Visualization With Python
DOWNLOAD
Author : Abha Belorkar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-04-14
Interactive Data Visualization With Python written by Abha Belorkar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-14 with Computers categories.
Create your own clear and impactful interactive data visualizations with the powerful data visualization libraries of Python Key FeaturesStudy and use Python interactive libraries, such as Bokeh and PlotlyExplore different visualization principles and understand when to use which oneCreate interactive data visualizations with real-world dataBook Description With so much data being continuously generated, developers, who can present data as impactful and interesting visualizations, are always in demand. Interactive Data Visualization with Python sharpens your data exploration skills, tells you everything there is to know about interactive data visualization in Python. You'll begin by learning how to draw various plots with Matplotlib and Seaborn, the non-interactive data visualization libraries. You'll study different types of visualizations, compare them, and find out how to select a particular type of visualization to suit your requirements. After you get a hang of the various non-interactive visualization libraries, you'll learn the principles of intuitive and persuasive data visualization, and use Bokeh and Plotly to transform your visuals into strong stories. You'll also gain insight into how interactive data and model visualization can optimize the performance of a regression model. By the end of the course, you'll have a new skill set that'll make you the go-to person for transforming data visualizations into engaging and interesting stories. What you will learnExplore and apply different interactive data visualization techniquesManipulate plotting parameters and styles to create appealing plotsCustomize data visualization for different audiencesDesign data visualizations using interactive librariesUse Matplotlib, Seaborn, Altair and Bokeh for drawing appealing plotsCustomize data visualization for different scenariosWho this book is for This book intends to provide a solid training ground for Python developers, data analysts and data scientists to enable them to present critical data insights in a way that best captures the user's attention and imagination. It serves as a simple step-by-step guide that demonstrates the different types and components of visualization, the principles, and techniques of effective interactivity, as well as common pitfalls to avoid when creating interactive data visualizations. Students should have an intermediate level of competency in writing Python code, as well as some familiarity with using libraries such as pandas.
Ultimate Enterprise Data Analysis And Forecasting Using Python
DOWNLOAD
Author : Shanthababu Pandian
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2023-12-28
Ultimate Enterprise Data Analysis And Forecasting Using Python written by Shanthababu Pandian and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-28 with Computers categories.
Practical Approaches to Time Series Analysis and Forecasting using Python for Informed Decision-Making KEY FEATURES ● Comprehensive Resource for Python-Based Time Series Analysis and Forecasting. ● Delve into real-world applications with industry-specific case studies. ● Extract valuable insights by solving time series challenges across various sectors. ● Understand the significance of Azure Time Series Insights and AWS Forecast components. ● Practical insights into leveraging cloud platforms for efficient time series forecasting. DESCRIPTION Embark on a transformative journey through the intricacies of time series analysis and forecasting with this comprehensive handbook. Beginning with the essential packages for data science and machine learning projects you will delve into Python's prowess for efficient time series data analysis, exploring the core components and real-world applications across various industries through compelling use-case studies. From understanding classical models like AR, MA, ARMA, and ARIMA to exploring advanced techniques such as exponential smoothing and ETS methods, this guide ensures a deep understanding of the subject. It will help you navigate the complexities of vector autoregression (VAR, VMA, VARMA) and elevate your skills with a deep dive into deep learning techniques for time series analysis. By the end of this book, you will be able to harness the capabilities of Azure Time Series Insights and explore the cutting-edge AWS Forecast components, unlocking the cloud's power for advanced and scalable time series forecasting. WHAT WILL YOU LEARN ● Explore Time Series Data Analysis and Forecasting, covering components and significance. ● Gain a practical understanding through hands-on examples and real-world case studies. ● Master Time Series Models (AR, MA, ARMA, ARIMA, VAR, VMA, VARMA) with executable samples. ● Delve into Deep Learning for Time Series Analysis, demystified with classical examples. ● Actively engage with Azure Time Series Insights and AWS Forecast components for a contemporary perspective. WHO IS THIS BOOK FOR? This book caters to beginners, intermediates, and practitioners in data-related fields such as Data Analysts, Data Scientists, and Machine Learning Engineers, as well as those venturing into Time Series Analysis and Forecasting. It assumes readers have a foundational understanding of programming languages (C, C++, Python), data structures, statistics, and visualization concepts. With a focus on specific projects, it also functions as a quick reference for advanced users. TABLE OF CONTENTS 1. Introduction to Python and its key packages for DS and ML Projects 2. Python for Time Series Data Analysis 3. Time Series Analysis and its Components 4. Time Series Analysis and Forecasting Opportunities in Various Industries 5. Exploring various aspects of Time Series Analysis and Forecasting 6. Exploring Time Series Models - AR, MA, ARMA, and ARIMA 7. Understanding Exponential Smoothing and ETS Methods in TSA 8. Exploring Vector Autoregression and its Subsets (VAR, VMA, and VARMA) 9. Deep Learning for Time Series Analysis and Forecasting 10. Azure Time Series Insights 11. AWSForecast Index