Uncertainty Analysis With High Dimensional Dependence Modelling

DOWNLOAD
Download Uncertainty Analysis With High Dimensional Dependence Modelling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Uncertainty Analysis With High Dimensional Dependence Modelling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Uncertainty Analysis With High Dimensional Dependence Modelling
DOWNLOAD
Author : Dorota Kurowicka
language : en
Publisher: John Wiley & Sons
Release Date : 2006-10-02
Uncertainty Analysis With High Dimensional Dependence Modelling written by Dorota Kurowicka and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-10-02 with Mathematics categories.
Mathematical models are used to simulate complex real-world phenomena in many areas of science and technology. Large complex models typically require inputs whose values are not known with certainty. Uncertainty analysis aims to quantify the overall uncertainty within a model, in order to support problem owners in model-based decision-making. In recent years there has been an explosion of interest in uncertainty analysis. Uncertainty and dependence elicitation, dependence modelling, model inference, efficient sampling, screening and sensitivity analysis, and probabilistic inversion are among the active research areas. This text provides both the mathematical foundations and practical applications in this rapidly expanding area, including: An up-to-date, comprehensive overview of the foundations and applications of uncertainty analysis. All the key topics, including uncertainty elicitation, dependence modelling, sensitivity analysis and probabilistic inversion. Numerous worked examples and applications. Workbook problems, enabling use for teaching. Software support for the examples, using UNICORN - a Windows-based uncertainty modelling package developed by the authors. A website featuring a version of the UNICORN software tailored specifically for the book, as well as computer programs and data sets to support the examples. Uncertainty Analysis with High Dimensional Dependence Modelling offers a comprehensive exploration of a new emerging field. It will prove an invaluable text for researches, practitioners and graduate students in areas ranging from statistics and engineering to reliability and environmetrics.
Uncertainty Analysis With High Dimensional Dependence Modelling
DOWNLOAD
Author : D. Kurowicka
language : en
Publisher:
Release Date : 2005
Uncertainty Analysis With High Dimensional Dependence Modelling written by D. Kurowicka and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with categories.
The Uncertainty Analysis Of Model Results
DOWNLOAD
Author : Eduard Hofer
language : en
Publisher: Springer
Release Date : 2018-05-02
The Uncertainty Analysis Of Model Results written by Eduard Hofer and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-02 with Mathematics categories.
This book is a practical guide to the uncertainty analysis of computer model applications. Used in many areas, such as engineering, ecology and economics, computer models are subject to various uncertainties at the level of model formulations, parameter values and input data. Naturally, it would be advantageous to know the combined effect of these uncertainties on the model results as well as whether the state of knowledge should be improved in order to reduce the uncertainty of the results most effectively. The book supports decision-makers, model developers and users in their argumentation for an uncertainty analysis and assists them in the interpretation of the analysis results.
Uncertainty Management In Simulation Optimization Of Complex Systems
DOWNLOAD
Author : Gabriella Dellino
language : en
Publisher: Springer
Release Date : 2015-06-29
Uncertainty Management In Simulation Optimization Of Complex Systems written by Gabriella Dellino and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-29 with Business & Economics categories.
This book aims at illustrating strategies to account for uncertainty in complex systems described by computer simulations. When optimizing the performances of these systems, accounting or neglecting uncertainty may lead to completely different results; therefore, uncertainty management is a major issues in simulation-optimization. Because of its wide field of applications, simulation-optimization issues have been addressed by different communities with different methods, and from slightly different perspectives. Alternative approaches have been developed, also depending on the application context, without any well-established method clearly outperforming the others. This editorial project brings together — as chapter contributors — researchers from different (though interrelated) areas; namely, statistical methods, experimental design, stochastic programming, global optimization, metamodeling, and design and analysis of computer simulation experiments. Editors’ goal is to take advantage of such a multidisciplinary environment, to offer to the readers a much deeper understanding of the commonalities and differences of the various approaches to simulation-based optimization, especially in uncertain environments. Editors aim to offer a bibliographic reference on the topic, enabling interested readers to learn about the state-of-the-art in this research area, also accounting for potential real-world applications to improve also the state-of-the-practice. Besides researchers and scientists of the field, the primary audience for the proposed book includes PhD students, academic teachers, as well as practitioners and professionals. Each of these categories of potential readers present adequate channels for marketing actions, e.g. scientific, academic or professional societies, internet-based communities, and authors or buyers of related publications.
Uncertainty Quantification In Scientific Computing
DOWNLOAD
Author : Andrew Dienstfrey
language : en
Publisher: Springer
Release Date : 2012-08-11
Uncertainty Quantification In Scientific Computing written by Andrew Dienstfrey and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-11 with Computers categories.
This book constitutes the refereed post-proceedings of the 10th IFIP WG 2.5 Working Conference on Uncertainty Quantification in Scientific Computing, WoCoUQ 2011, held in Boulder, CO, USA, in August 2011. The 24 revised papers were carefully reviewed and selected from numerous submissions. They are organized in the following topical sections: UQ need: risk, policy, and decision making, UQ theory, UQ tools, UQ practice, and hot topics. The papers are followed by the records of the discussions between the participants and the speaker.
Applied Linear Regression
DOWNLOAD
Author : Sanford Weisberg
language : en
Publisher: John Wiley & Sons
Release Date : 2013-11-25
Applied Linear Regression written by Sanford Weisberg and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-25 with Mathematics categories.
Praise for the Third Edition "...this is an excellent book which could easily be used as a course text..." —International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illustrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. While maintaining the accessible appeal of each previous edition,Applied Linear Regression, Fourth Edition features: Graphical methods stressed in the initial exploratory phase, analysis phase, and summarization phase of an analysis In-depth coverage of parameter estimates in both simple and complex models, transformations, and regression diagnostics Newly added material on topics including testing, ANOVA, and variance assumptions Updated methodology, such as bootstrapping, cross-validation binomial and Poisson regression, and modern model selection methods Applied Linear Regression, Fourth Edition is an excellent textbook for upper-undergraduate and graduate-level students, as well as an appropriate reference guide for practitioners and applied statisticians in engineering, business administration, economics, and the social sciences.
Meta Analysis
DOWNLOAD
Author : Elena Kulinskaya
language : en
Publisher: John Wiley & Sons
Release Date : 2008-04-15
Meta Analysis written by Elena Kulinskaya and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-04-15 with Mathematics categories.
Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence acts as a source of basic methods for scientists wanting to combine evidence from different experiments. The authors aim to promote a deeper understanding of the notion of statistical evidence. The book is comprised of two parts – The Handbook, and The Theory. The Handbook is a guide for combining and interpreting experimental evidence to solve standard statistical problems. This section allows someone with a rudimentary knowledge in general statistics to apply the methods. The Theory provides the motivation, theory and results of simulation experiments to justify the methodology. This is a coherent introduction to the statistical concepts required to understand the authors’ thesis that evidence in a test statistic can often be calibrated when transformed to the right scale.
Structural Equation Modeling
DOWNLOAD
Author : Jichuan Wang
language : en
Publisher: John Wiley & Sons
Release Date : 2019-09-17
Structural Equation Modeling written by Jichuan Wang and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-17 with Mathematics categories.
Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus.
Nonparametric Analysis Of Univariate Heavy Tailed Data
DOWNLOAD
Author : Natalia Markovich
language : en
Publisher: John Wiley & Sons
Release Date : 2008-03-11
Nonparametric Analysis Of Univariate Heavy Tailed Data written by Natalia Markovich and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-03-11 with Mathematics categories.
Heavy-tailed distributions are typical for phenomena in complex multi-component systems such as biometry, economics, ecological systems, sociology, web access statistics, internet traffic, biblio-metrics, finance and business. The analysis of such distributions requires special methods of estimation due to their specific features. These are not only the slow decay to zero of the tail, but also the violation of Cramer’s condition, possible non-existence of some moments, and sparse observations in the tail of the distribution. The book focuses on the methods of statistical analysis of heavy-tailed independent identically distributed random variables by empirical samples of moderate sizes. It provides a detailed survey of classical results and recent developments in the theory of nonparametric estimation of the probability density function, the tail index, the hazard rate and the renewal function. Both asymptotical results, for example convergence rates of the estimates, and results for the samples of moderate sizes supported by Monte-Carlo investigation, are considered. The text is illustrated by the application of the considered methodologies to real data of web traffic measurements.
Multivariate Density Estimation
DOWNLOAD
Author : David W. Scott
language : en
Publisher: John Wiley & Sons
Release Date : 2015-03-12
Multivariate Density Estimation written by David W. Scott and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-12 with Mathematics categories.
Clarifies modern data analysis through nonparametric density estimation for a complete working knowledge of the theory and methods Featuring a thoroughly revised presentation, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition maintains an intuitive approach to the underlying methodology and supporting theory of density estimation. Including new material and updated research in each chapter, the Second Edition presents additional clarification of theoretical opportunities, new algorithms, and up-to-date coverage of the unique challenges presented in the field of data analysis. The new edition focuses on the various density estimation techniques and methods that can be used in the field of big data. Defining optimal nonparametric estimators, the Second Edition demonstrates the density estimation tools to use when dealing with various multivariate structures in univariate, bivariate, trivariate, and quadrivariate data analysis. Continuing to illustrate the major concepts in the context of the classical histogram, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition also features: Over 150 updated figures to clarify theoretical results and to show analyses of real data sets An updated presentation of graphic visualization using computer software such as R A clear discussion of selections of important research during the past decade, including mixture estimation, robust parametric modeling algorithms, and clustering More than 130 problems to help readers reinforce the main concepts and ideas presented Boxed theorems and results allowing easy identification of crucial ideas Figures in color in the digital versions of the book A website with related data sets Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition is an ideal reference for theoretical and applied statisticians, practicing engineers, as well as readers interested in the theoretical aspects of nonparametric estimation and the application of these methods to multivariate data. The Second Edition is also useful as a textbook for introductory courses in kernel statistics, smoothing, advanced computational statistics, and general forms of statistical distributions.