[PDF] Understanding The Morphology At Donor Acceptor Interfaces In Organic Semiconductors - eBooks Review

Understanding The Morphology At Donor Acceptor Interfaces In Organic Semiconductors


Understanding The Morphology At Donor Acceptor Interfaces In Organic Semiconductors
DOWNLOAD

Download Understanding The Morphology At Donor Acceptor Interfaces In Organic Semiconductors PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Understanding The Morphology At Donor Acceptor Interfaces In Organic Semiconductors book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Understanding The Morphology At Donor Acceptor Interfaces In Organic Semiconductors


Understanding The Morphology At Donor Acceptor Interfaces In Organic Semiconductors
DOWNLOAD
Author : Zixuan Guo
language : en
Publisher:
Release Date : 2022

Understanding The Morphology At Donor Acceptor Interfaces In Organic Semiconductors written by Zixuan Guo and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.


Organic electronic devices, including organic photovoltaics (OPV), organic light-emitting diodes (OLEDs), and organic field-effect transistors (OFETs), have become increasingly important in consumer electronic applications due to the development of organic semiconductors, including organic small molecules, and conjugated polymers. They have advantages such as light weight, flexibility/stretchability, and the ability for roll-to-roll manufacturing. The structure and mechanism of organic devices are analogous to inorganic semiconductor devices, where donor materials (p-type) and acceptor materials (n-type) are used to create interfaces. To build high-performance organic electronic devices, it is essential to understand functionalities of organic heterojunction because they are building blocks of electronics. Organic heterojunction is interfaces created between donor and acceptor organic semiconductors. Exciting electronic action of devices occurs at organic interfaces. From a fundamental viewpoint, the role of interfaces must have optimal electronic and physical communication to yield highly efficient devices. From a technological viewpoint, one must understand, control, and have a rational design of the desired electronic and optical properties at organic interfaces for the development of different electronics and a host of potential new device concepts that have not yet been developed or realized. In this dissertation, we will use organic semiconductors for organic photovoltaics (OPV) as an example to investigat organic heterojunction interfaces, including interface fabrication, epitaxy, morphology control, and characterization, with the aim of building high-performance devices with good stability. We begin by discussing the growth of organic single-crystalline crystals with controlled orientations. Materials used are two small molecules: zinc phthalocyanine (ZnPc, p-type) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA, n-type). In this study, a self-built vertical physical vapor transport (v-PVT) chamber is used for crystallization, and a graphene-coated substrate is used to control molecular packing. Although ZnPc and PTCDA have a planar molecular shape and face-on packing motif on graphene, we find that they have different growth modes. Such growth mechanism difference can be explained by competition between intermolecular and molecule-graphene interactions. We then continue the abovementioned study by building model heterojunctions on graphene substrates using ZnPc and PTCDA. We discover that thermodynamics and kinetics of the system affect P-N junction morphology. We find that ZnPc and PTCDA form the "line-on-line" organic weak epitaxy at heterojunction interfaces from X-ray studies and crystallography refinement. We also verify that P-N junctions can generate electron-hole pairs. This work will advance the knowledge and create enabling opportunities to fabricate single-crystalline-oriented nanostructures. Besides using organic small molecules, we also explore the structure-property-performance relationship of conjugated block copolymers (BCPs) for OPV applications. In this work, a new donor-acceptor BCP is synthesized and added into polymer blend solar cells. We find that adding BCP could potentially retain the relative degree of crystallinity of [pi]-[pi] stacking regions, and decrease the detrimental interaction between donor polymer and electrode under thermal stress, thus improving the solar device's thermal stability by 30%. Finally, we explore the possibility of using graphene engineering for epitaxial growth dynamics control of organic small molecules. We determine that two distinct, alternating morphologies of ZnPc crystals are simultaneously observed on a single epitaxial SiC-graphene substrate. We hypothesize that the different morphologies arise from electronic structure and surface energy differences of underlying SiC-graphene regions ZnPc is grown on. The result will enable selective patterning of organic semiconductors for use in advanced warfare device applications. We hope these studies throughout this work will advance knowledge on fundamental crystallization mechanisms, interface engineering, morphology control, and characterization in organic crystalline systems. This work could further produce various future architectures for different applications in organic electronics.



Examining And Controlling The Morphology Of The Photoactive Layer Of Organic Photovoltaic Devices


Examining And Controlling The Morphology Of The Photoactive Layer Of Organic Photovoltaic Devices
DOWNLOAD
Author : Sameer Vajjala Kesava
language : en
Publisher:
Release Date : 2015

Examining And Controlling The Morphology Of The Photoactive Layer Of Organic Photovoltaic Devices written by Sameer Vajjala Kesava and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.


Electronic devices such as solar cells, transistors and light-emitting diodes (LEDs) fabricated using organic semiconductors offer a potential feasible alternative to their inorganic counterparts due to several advantages such as ease of processing (ink-jet printing, roll-to-roll processing), flexibility and excellent control over the electronic properties through chemical modifications. Compared to the inorganic semiconductors, however, the performance of organic semiconductor-based electronic devices are much lower. For example, in the case of photovoltaic devices (solar cells), the power-conversion efficiencies are still lower (7%-10%) compared to that of inorganic solar cells (> 25%). The efficiency of a solar cell is determined, among other factors, to a significant extent by the morphology of the active layer, the thin film where photons are absorbed and charges generated. Even though significant improvement in the efficiencies have been achieved, mainly through band-gap engineering and processing optimization, a fundamental understanding of the structural and morphological effects of the active layer on the performance of organic photovoltaic devices remains obscured. In this work, the focus is on examining the structure-function relationships in solution-processed bulk-heterojunction organic photovoltaic devices and development of processing techniques for device optimization. A bulk-heterojunction device is formed by mixing of donor-acceptor semiconductors, and the subsequent structure formed in the active layer is dictated by the miscibility and crystallization of the components, which are functions of processing conditions. Excitons (electron-hole pairs bound by coulombic forces) formed in the donor semiconductor upon absorption of light have a diffusion length of around 5-10 nm before recombination occurs. Thus the structural length scales formed in the active layer determine the number of excitons that can dissociate into charges. We have examined the microstructure of poly(3-hexyl thiophene) (P3HT) donor and phenyl-C61-butyric acid methyl ester (PC61BM) acceptor mixture using grazing incidence small angle X-ray scattering (GISAXS) and energy-filtered transmission electron microscopy (EFTEM) to characterize the in-plane structural length scales for various processing conditions such as annealing temperatures and spin-casting solvents. Our results show that the structural length scales are driven by self-limiting P3HT crystallization upon thermal annealing, which correlate to the internal quantum efficiencies of the devices. In contrast, it has been reported in the case of poly[2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT)/ fullerene mixtures that thermal annealing results in crystallization of PBTTT with unconstrained lateral dimensions causing coarsening of the in-plane characteristic length scales. Thus the morphological evolution in polymer/fullerene solar cells, and consequently device performance, depends on the crystallization motif of the polymer. The microstructure resulting from mixing of donor-acceptor semiconductors can yield distinctive donor-acceptor interfaces that affect charge separation and recombination. Our studies utilizing a low band-gap poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]germole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PGeBTBT) donor and PC71BM acceptor examine the effects of mixing on the charge generation in a device. Composition of mixed phases ascertained qualitatively and quantitatively using EFTEM and resonance soft X-ray scattering (RSOXS) show that the concentration of polymer in the mixed phase decreases as fullerene concentration in the mixture is increased. This resulted in a concomitant increase in the device performance. Similarly, photo-induced absorption studies carried out using ultrafast spectroscopy show increase in polaron concentration with increase in purity of the mixed phase. Grazing-incidence wide-angle X-ray scattering (GIWAXS) data show a change in fullerene aggregation with increase in fullerene concentration in the mixture. This indicates that adding polymer to the mixed phase results in dispersal of fullerene, and consequently, changing the local environment of the polymer affects formation of charge-transfer states and subsequent dissociation into individual charges. Thus, high interfacial area that is formed upon intimate mixing of polymer/fullerene, considered ideal for efficient exciton dissociation, counteracts through high charge recombination. Our results show that the composition of mixed phases affects charge separation at the interface consequently affecting device performance of organic photovoltaics. Another important aspect that has been shown to affect device performance of organic photovoltaics is the orientation of polymer crystals with respect to the substrate. For example, P3HT predominantly orients in an edge-on configuration, i.e., with the [pi]-[pi] bond stacking direction parallel to the substrate. It is hypothesized that out of plane [pi]-[pi] stacking, called face-on orientation, is important for effective charge transport. One way to achieve enhancement of face-on orientation is by directional crystallization which has been shown to be very effective for P3HT -- in this case, directional crystallization from solution. In this context, 'zone-annealing' is relevant as it has been employed to directionally crystallize polymers. In this work, we designed and developed the zone-annealing equipment, which can yield thermal gradients greater than 60°C/mm. Preliminary results from GIWAXS experiments on P3HT/PC61BM thin films show anisotropy in the structure and a moderate enhancement of face-on orientated P3HT crystallites. This technique was extended to organic field-effect transistors (OFET) to enhance charge mobilities through directional crystallization of organic semiconductors. In case of P3HT, the increment in charge mobilities was by a factor of 2 upon zone-annealing. However, in the case of organic small molecule semiconductor, 2,7-dioctyl[1]benzo- thieno[3,2-b][1] benzothiophene (C8-BTBT) , highly aligned crystalline domains were obtained -- a very promising result for fabricating high mobility OFETs. Thus, the zone-annealing technique provides a handle for controlling the morphology of organic thin film electronic devices.



The Non Local Density Of States Of Electronic Excitations In Organic Semiconductors


The Non Local Density Of States Of Electronic Excitations In Organic Semiconductors
DOWNLOAD
Author : Carl. R Poelking
language : en
Publisher: Springer
Release Date : 2017-10-24

The Non Local Density Of States Of Electronic Excitations In Organic Semiconductors written by Carl. R Poelking and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-24 with Technology & Engineering categories.


This book focuses on the microscopic understanding of the function of organic semiconductors. By tracing the link between their morphological structure and electronic properties across multiple scales, it represents an important advance in this direction. Organic semiconductors are materials at the interface between hard and soft matter: they combine structural variability, processibility and mechanical flexibility with the ability to efficiently transport charge and energy. This unique set of properties makes them a promising class of materials for electronic devices, including organic solar cells and light-emitting diodes. Understanding their function at the microscopic scale – the goal of this work – is a prerequisite for the rational design and optimization of the underlying materials. Based on new multiscale simulation protocols, the book studies the complex interplay between molecular architecture, supramolecular organization and electronic structure in order to reveal why some materials perform well – and why others do not. In particular, by examining the long-range effects that interrelate microscopic states and mesoscopic structure in these materials, the book provides qualitative and quantitative insights into e.g. the charge-generation process, which also serve as a basis for new optimization strategies.



Donor Acceptor Organic Semiconductors


Donor Acceptor Organic Semiconductors
DOWNLOAD
Author : Jia Du
language : en
Publisher:
Release Date : 2017

Donor Acceptor Organic Semiconductors written by Jia Du and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Conjugated polymers categories.


Organic semiconductors have drawn remarkable attention due to their light weight, feasible fabrication and flexibility in the field of organic photovoltaics and field effect transistors. The rapidly increasing world population and the accompanied with huge energy demands are becoming a big concern for the future, which makes harvesting unlimited solar power using photovoltaic devices extremely important. A remarkable amount of research has been done to improve the power conversion efficiency in terms of the materials design, morphology investigations and device engineering. Organic field effect transistors utilizing solution-processed conjugated polymers can be fabricated efficiently at a low cost roll-to-roll technique over a large area. Designing high performing conjugated polymers and investigating their morphology is essential. In this dissertation, the fundamentals and the recent developments of organic semiconductors are covered in Chapter 1. The basic operation mechanism of organic photovoltaics and field effect transistors are introduced. Semiconducting molecules and polymers that have been reported using benzo[1,2-b;4,5-b’]dithiophene (BDT), benzo[1,2-b;4,5-b’]difuran (BDF), 2,1,3-benzothiadiazole (BT), and diketopyrrolopyrrole (DPP), are discussed and summarized. Chapter 2 describes the isomeric effect of two small molecules containing BDT and BT units on the photovoltaic performance. The influence on UV-vis absorption, frontier molecular orbital energy level, and morphology due to the position of the BT unit was systematically investigated. The photovoltaic performance was studied in bulk heterojunction solar cells with [6, 6]-phenyl-C71-butyric acid methyl ester used as the acceptor. Chapter 3 describes the synthesis of novel conjugated polymers built from BDF and furan substituted DPP unit. Furan and its derivatives are regarded as green and renewable building units. This polymer was tested in bulk heterojunction solar cells with the highest power conversion efficiency of 5.55% and high fill factor of 0.73 achieved when 4% diphenyl ether was applied to optimize the phase separation. The morphology of the blend films was investigated by atomic force microscopy, grazing incident wide-angle X-ray scattering and transmission electron microscopy. In Chapter 4, an alternative copolymer built from furan substituted DPP and (E)-1,2-di(furan-2-yl)ethene was synthesized by Stille coupling and employed in organic field effect transistors. Hole mobility of 0.42 cm2 V-1 s-1 was achieved with current on/off ratio of 104 after annealing the thin film at 150 oC for 5 minutes. The higher mobility after thermal annealing was explained by the increased crystallinity, which was revealed by atomic force microscopy and grazing incident X-ray diffraction. At the end, the prospective and future work for the organic photovoltaics and field effect transistors are discussed in Chapter 5.



Organic Solar Cells


Organic Solar Cells
DOWNLOAD
Author : Qiquan Qiao
language : en
Publisher: CRC Press
Release Date : 2017-12-19

Organic Solar Cells written by Qiquan Qiao and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-19 with Science categories.


Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.



High Performance Multi Component Organic Solar Cells


High Performance Multi Component Organic Solar Cells
DOWNLOAD
Author : Ismail Alperen Ayhan
language : en
Publisher:
Release Date : 2023

High Performance Multi Component Organic Solar Cells written by Ismail Alperen Ayhan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with categories.


Renewable energies significantly gained in importance in the last decade. Due to worldwide ecological problems and global warming, much effort is needed to increase the awareness and protect earth from the impacts with respect to the climate changes. Particularly, the excessive use of fossil fuels force countries to figure out some alternative applications for the energy supply. Other than hydro and wind-based applications, solar energy becomes the most important renewable technology to reduce the carbon dioxide emission and worldwide photovoltaic systems have recently been installed by gradually rising. Since only China and India are building several coal powers every week for energy needs based-on their population1, it is very important to develop efficient and low-cost solar energy systems to attract attention for especially newly develop countries other than develop ones. Organic solar cells (OSCs) are one of the most promising solar energy systems due to some unique advantages, such as low-cost, lightweight, flexible, semitransparent, large area compatibility, easy fabrication (roll to roll), easy processing (from solution), and energy level tunability, which enables new fields of applications. In contrast to inorganic solar cells, high temperature fabrication techniques are not needed to prepare organic photovoltaics. In solution processed OSCs, the organic semiconductor materials are used in active layer to absorb light and convert it to electrical energy. The active layers containing donor and accepter components where the optimized morphology is achieved through an interpenetrating phase-separated donor-acceptor network that is called as bulk heterojunction. The efficiency of bulk heterojunction OSCs is strongly correlated with the morphology of their active layers, which requires an optimized distribution of the donor and acceptor domains. A large interface between donor and acceptor domains are needed to obtain efficient exciton dissociation at interface. Also, percolation pathways are required to transport the charges to the corresponding electrodes. The nanomorphology depends on tendency of the active layer components to crystallization and phase-separation. These morphological properties can be optimized by altering the process parameters, such as selection of materials and solvents, composition, thickness, and thermal treatments. Recently, OSCs has been remarkably enhanced with power conversion efficiency exceeding 16% by virtue of new materials development and device optimizations.2--4 It is commonly known that the limited absorption window of organic semiconductors causes low photon-harvesting ability from active layer. Multi-component organic solar cells, which consist of one donor and two acceptors, are a promising strategy for broadening the light absorption spectrum and enhancing the power conversion efficiency (PCE) of the organic photovoltaic devices, due to the diverse small molecular materials with different optical band gaps and good compatibility. In this dissertation, the binary and ternary blend systems were studied through optimizing processing parameters and the effect of these parameters on the structural, morphological, electrical and photovoltaic properties were investigated by performing UV-vis absorption, EQE measurement, Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) and energy-filtered transmission electron microscopy (EFTEM). In the first part of dissertation, it is found that optimized blends share a universal fibril-like structure, where the polymer donor appears to dictate fibril size. In the second part of section, the effect of third component in ternary blend OSCs is discussed where the optimum morphology is achieved and if the ternary blend systems also have similar morphology such as fibril-like structure. As expected, the ternary blend system showed significant enhancement of device performance due to broadening of the absorption spectrum and the fill factor. We attribute that the high morphology compatibility of the ternary system can benefit to optimized electron/hole mobility and diminished recombination.



Interfaces Of Electrical Contacts In Organic Semiconductor Devices


Interfaces Of Electrical Contacts In Organic Semiconductor Devices
DOWNLOAD
Author : Korhan Demirkan
language : en
Publisher: ProQuest
Release Date : 2008

Interfaces Of Electrical Contacts In Organic Semiconductor Devices written by Korhan Demirkan and has been published by ProQuest this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Electric contacts categories.


Progress in organic semiconductor devices relies on better understanding of interfaces as well as material development. The engineering of interfaces that exhibit low resistance, low operating voltage and long-term stability to minimize device degradation is one of the crucial requirements. Photoelectron spectroscopy is a powerful technique to study the metal-semiconductor interfaces, allowing: (i) elucidation of the energy levels of the semiconductor and the contacts that determine Schottky barrier height, (ii) inspection of electrical interactions (such as charge transfer, dipole formation, formation of induced density of states or formation of polaron/bi-polaron states) that effect the energy level alignment, (iii) determination of interfacial chemistry, and (iv) estimation of interface morphology. In this thesis, we have used photoelectron spectroscopy extensively for detailed analysis of the metal organic semiconductor interfaces. In this study, we demonstrate the use of photoelectron spectroscopy for construction of energy level diagrams and display some results related to chemical tailoring of materials for engineering interfaces with lowered Schottky barriers. Following our work on the energy level alignment of poly(p-phenyene vinylene) based organic semiconductors on various substrates [Au, indium tin oxide, Si (with native oxide) and Al (with native oxide)], we tested controlling the energy level alignment by using polar self assembled molecules (SAMs). Photoelectron spectroscopy showed that, by introducing SAMs on the Au surface, we successfully changed the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. To investigate the chemical interactions at the metal/organic interface, we studied the metallization of poly(2-methoxy-5,2'-ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene (PS) and ozone treated polystyrene (PS-O3) surfaces by thermal deposition of aluminum. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer, for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of Al with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Formation of metal oxide and metal-organic compound is detected during the Al metallization of MEH-PPV and ozone-treated PS surfaces. Our results showed that the condensation of Al on polymer surfaces is highly dependent on surface reactivity. Enormous differences were observed for the condensation coefficient of Al on PS and PS-O3 surfaces. For the inert PS surface, results showed that Al atoms poorly wet the polymer surface and form distributed clusters at the surface. Results on reactive polymer surfaces suggest morphology reminiscent of a Stranski- Krastanov-type growth and high contact area. Many studies have shown that the insertion of a thin interlayer of the oxide or fluoride of alkali or alkaline metals between the low work function electrode and the organic semiconductor layers dramatically lowers the onset voltage and increases the efficiency compared to identical devices without the insulating layer. Various modes have been suggested for the mechanism of device performance enhancement. We have investigated the chemical and electrical interaction of (i) LiF with MEH-PPV, (ii) Al with MEH-PPV in the presence of a thin LiF layer at the interface, and finally (iii) the interaction of Al with LiF. AFM and XPS data showed that LiF forms island on the surface. Our data in agreement with various existing models suggested the (i) alteration in the electronic properties under applied bias, (ii) doping of the organic semiconductor, (iii) formation of metal alloy (Au-Li). In addition to the possible electrical modifications at the interface suggested previously, our data also suggest a change in the film growth on LiF modified surfaces.



Solution Processable Components For Organic Electronic Devices


Solution Processable Components For Organic Electronic Devices
DOWNLOAD
Author : Beata Luszczynska
language : en
Publisher: John Wiley & Sons
Release Date : 2019-06-11

Solution Processable Components For Organic Electronic Devices written by Beata Luszczynska and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-11 with Technology & Engineering categories.


Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.



Electronic Processes In Organic Semiconductors


Electronic Processes In Organic Semiconductors
DOWNLOAD
Author : Anna Köhler
language : en
Publisher: John Wiley & Sons
Release Date : 2015-06-08

Electronic Processes In Organic Semiconductors written by Anna Köhler and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-08 with Technology & Engineering categories.


The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.



Organic Solar Cells


Organic Solar Cells
DOWNLOAD
Author : Liming Ding
language : en
Publisher: John Wiley & Sons
Release Date : 2022-02-09

Organic Solar Cells written by Liming Ding and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-09 with Technology & Engineering categories.


Organic Solar Cells A timely and singular resource on the latest advances in organic photovoltaics Organic photovoltaics are gaining widespread attention due to their solution processability, tunable electronic properties, low temperature manufacture, and cheap and light materials. Their wide range of potential applications may result in significant near-term commercialization of the technology. In Organic Solar Cells: Materials Design, Technology and Commercialization, renowned scientist Dr. Liming Ding delivers a comprehensive exploration of organic solar cells, including discussions of their key materials, mechanisms, molecular designs, stability features, and applications. The book presents the most state-of-the-art developments in the field alongside fulsome treatments of the commercialization potential of various organic solar cell technologies. The author also provides: Thorough introductions to fullerene acceptors, polymer donors, and non-fullerene small molecule acceptors Comprehensive explorations of p-type molecular photovoltaic materials and polymer-polymer solar cell materials, devices, and stability Practical discussions of electron donating ladder-type heteroacenes for photovoltaic applications In-depth examinations of chlorinated organic and single-component organic solar cells, as well as the morphological characterization and manipulation of organic solar cells Perfect for materials scientists, organic and solid-state chemists, and solid-state physicists, Organic Solar Cells: Materials Design, Technology and Commercialization will also earn a place in the libraries of surface chemists and physicists and electrical engineers.