Unsupervised Learning In Space And Time

DOWNLOAD
Download Unsupervised Learning In Space And Time PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Unsupervised Learning In Space And Time book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Unsupervised Learning In Space And Time
DOWNLOAD
Author : Marius Leordeanu
language : en
Publisher:
Release Date : 2020
Unsupervised Learning In Space And Time written by Marius Leordeanu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computer vision categories.
This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field. Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video. The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts. Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way. Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines. Dr. Marius Leordeanu is an Associate Professor (Senior Lecturer) at the Computer Science & Engineering Department, Polytechnic University of Bucharest and a Senior Researcher at the Institute of Mathematics of the Romanian Academy (IMAR), Bucharest, Romania. In 2014, he was awarded the Grigore Moisil Prize, the most prestigious award in mathematics bestowed by the Romanian Academy, for his work on unsupervised learning.
Unsupervised Learning In Space And Time
DOWNLOAD
Author : Marius Leordeanu
language : en
Publisher: Springer Nature
Release Date : 2020-04-17
Unsupervised Learning In Space And Time written by Marius Leordeanu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-17 with Computers categories.
This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field. Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video. The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts. Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way. Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines.
Machine Learning Techniques For Space Weather
DOWNLOAD
Author : Enrico Camporeale
language : en
Publisher: Elsevier
Release Date : 2018-05-31
Machine Learning Techniques For Space Weather written by Enrico Camporeale and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-31 with Science categories.
Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms
Machine Learning For Decision Sciences With Case Studies In Python
DOWNLOAD
Author : S. Sumathi
language : en
Publisher: CRC Press
Release Date : 2022-07-08
Machine Learning For Decision Sciences With Case Studies In Python written by S. Sumathi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-08 with Computers categories.
This book provides a detailed description of machine learning algorithms in data analytics, data science life cycle, Python for machine learning, linear regression, logistic regression, and so forth. It addresses the concepts of machine learning in a practical sense providing complete code and implementation for real-world examples in electrical, oil and gas, e-commerce, and hi-tech industries. The focus is on Python programming for machine learning and patterns involved in decision science for handling data. Features: Explains the basic concepts of Python and its role in machine learning. Provides comprehensive coverage of feature engineering including real-time case studies. Perceives the structural patterns with reference to data science and statistics and analytics. Includes machine learning-based structured exercises. Appreciates different algorithmic concepts of machine learning including unsupervised, supervised, and reinforcement learning. This book is aimed at researchers, professionals, and graduate students in data science, machine learning, computer science, and electrical and computer engineering.
Time Space Spiking Neural Networks And Brain Inspired Artificial Intelligence
DOWNLOAD
Author : Nikola K. Kasabov
language : en
Publisher: Springer
Release Date : 2018-08-29
Time Space Spiking Neural Networks And Brain Inspired Artificial Intelligence written by Nikola K. Kasabov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-29 with Technology & Engineering categories.
Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author’s contribution to the area. The book introduces for the first time not only deep learning and deep knowledge representation in the human brain and in brain-inspired SNN, but takes that further to develop new types of AI systems, called in the book brain-inspired AI (BI-AI). BI-AI systems are illustrated on: cognitive brain data, including EEG, fMRI and DTI; audio-visual data; brain-computer interfaces; personalized modelling in bio-neuroinformatics; multisensory streaming data modelling in finance, environment and ecology; data compression; neuromorphic hardware implementation. Future directions, such as the integration of multiple modalities, such as quantum-, molecular- and brain information processing, is presented in the last chapter. The book is a research book for postgraduate students, researchers and practitioners across wider areas, including computer and information sciences, engineering, applied mathematics, bio- and neurosciences.
Space Time Computing With Temporal Neural Networks
DOWNLOAD
Author : James E. Smith
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Space Time Computing With Temporal Neural Networks written by James E. Smith and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Technology & Engineering categories.
Understanding and implementing the brain's computational paradigm is the one true grand challenge facing computer researchers. Not only are the brain's computational capabilities far beyond those of conventional computers, its energy efficiency is truly remarkable. This book, written from the perspective of a computer designer and targeted at computer researchers, is intended to give both background and lay out a course of action for studying the brain's computational paradigm. It contains a mix of concepts and ideas drawn from computational neuroscience, combined with those of the author. As background, relevant biological features are described in terms of their computational and communication properties. The brain's neocortex is constructed of massively interconnected neurons that compute and communicate via voltage spikes, and a strong argument can be made that precise spike timing is an essential element of the paradigm. Drawing from the biological features, a mathematics-based computational paradigm is constructed. The key feature is spiking neurons that perform communication and processing in space-time, with emphasis on time. In these paradigms, time is used as a freely available resource for both communication and computation. Neuron models are first discussed in general, and one is chosen for detailed development. Using the model, single-neuron computation is first explored. Neuron inputs are encoded as spike patterns, and the neuron is trained to identify input pattern similarities. Individual neurons are building blocks for constructing larger ensembles, referred to as "columns". These columns are trained in an unsupervised manner and operate collectively to perform the basic cognitive function of pattern clustering. Similar input patterns are mapped to a much smaller set of similar output patterns, thereby dividing the input patterns into identifiable clusters. Larger cognitive systems are formed by combining columns into a hierarchical architecture. These higher level architectures are the subject of ongoing study, and progress to date is described in detail in later chapters. Simulation plays a major role in model development, and the simulation infrastructure developed by the author is described.
Advanced Lectures On Machine Learning
DOWNLOAD
Author : Olivier Bousquet
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-09-02
Advanced Lectures On Machine Learning written by Olivier Bousquet and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-09-02 with Computers categories.
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.
Advanced Cyber Defense For Space Missions And Operations Concepts And Applications
DOWNLOAD
Author : Gupta, Brij B.
language : en
Publisher: IGI Global
Release Date : 2025-04-18
Advanced Cyber Defense For Space Missions And Operations Concepts And Applications written by Gupta, Brij B. and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-18 with Technology & Engineering categories.
Cutting-edge techniques and strategies are necessary to protect space missions from cyber threats. The latest advancements in cyber defense technologies offer insights into the unique challenges of securing space-based systems and infrastructure. Additionally, a combination of theoretical insights and practical applications provides a holistic understanding of cyber security tailored specifically for the space industry. Securing space missions against and understanding the complexities of cyber threats are of critical importance. Advanced Cyber Defense for Space Missions and Operations: Concepts and Applications addresses the intersection of cyber security and space missions, a field of growing importance as space exploration and satellite technologies continue to advance. By providing a detailed examination of contemporary cyber defense strategies, this publication offers innovative solutions and best practices for enhancing the security of space missions. Covering topics such as cyber-physical systems, attack detection models, and geopolitical shifts, this book is an excellent resource for cyber security specialists, aerospace engineers, IT professionals, policymakers, defense strategists, researchers, professionals, scholars, academicians, and more.
Encyclopedia Of Machine Learning
DOWNLOAD
Author : Claude Sammut
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-03-28
Encyclopedia Of Machine Learning written by Claude Sammut and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-28 with Computers categories.
This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.
Hands On Unsupervised Learning Using Python
DOWNLOAD
Author : Ankur A. Patel
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-02-21
Hands On Unsupervised Learning Using Python written by Ankur A. Patel and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with Computers categories.
Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning Set up and manage machine learning projects end-to-end Build an anomaly detection system to catch credit card fraud Clusters users into distinct and homogeneous groups Perform semisupervised learning Develop movie recommender systems using restricted Boltzmann machines Generate synthetic images using generative adversarial networks