[PDF] Using Artificial Neural Networks For Timeseries Smoothing And Forecasting - eBooks Review

Using Artificial Neural Networks For Timeseries Smoothing And Forecasting


Using Artificial Neural Networks For Timeseries Smoothing And Forecasting
DOWNLOAD

Download Using Artificial Neural Networks For Timeseries Smoothing And Forecasting PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Using Artificial Neural Networks For Timeseries Smoothing And Forecasting book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Using Artificial Neural Networks For Timeseries Smoothing And Forecasting


Using Artificial Neural Networks For Timeseries Smoothing And Forecasting
DOWNLOAD
Author : Jaromír Vrbka
language : en
Publisher: Springer Nature
Release Date : 2021-09-04

Using Artificial Neural Networks For Timeseries Smoothing And Forecasting written by Jaromír Vrbka and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-04 with Technology & Engineering categories.


The aim of this publication is to identify and apply suitable methods for analysing and predicting the time series of gold prices, together with acquainting the reader with the history and characteristics of the methods and with the time series issues in general. Both statistical and econometric methods, and especially artificial intelligence methods, are used in the case studies. The publication presents both traditional and innovative methods on the theoretical level, always accompanied by a case study, i.e. their specific use in practice. Furthermore, a comprehensive comparative analysis of the individual methods is provided. The book is intended for readers from the ranks of academic staff, students of universities of economics, but also the scientists and practitioners dealing with the time series prediction. From the point of view of practical application, it could provide useful information for speculators and traders on financial markets, especially the commodity markets.



Artificial Neural Networks And Machine Learning Icann 2013


Artificial Neural Networks And Machine Learning Icann 2013
DOWNLOAD
Author : Valeri Mladenov
language : en
Publisher: Springer
Release Date : 2013-09-04

Artificial Neural Networks And Machine Learning Icann 2013 written by Valeri Mladenov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-09-04 with Computers categories.


The book constitutes the proceedings of the 23rd International Conference on Artificial Neural Networks, ICANN 2013, held in Sofia, Bulgaria, in September 2013. The 78 papers included in the proceedings were carefully reviewed and selected from 128 submissions. The focus of the papers is on following topics: neurofinance graphical network models, brain machine interfaces, evolutionary neural networks, neurodynamics, complex systems, neuroinformatics, neuroengineering, hybrid systems, computational biology, neural hardware, bioinspired embedded systems, and collective intelligence.



Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes


Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes
DOWNLOAD
Author : Cheng Few Lee
language : en
Publisher: World Scientific
Release Date : 2020-07-30

Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes written by Cheng Few Lee and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-30 with Business & Economics categories.


This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.



Forecasting Principles And Practice


Forecasting Principles And Practice
DOWNLOAD
Author : Rob J Hyndman
language : en
Publisher: OTexts
Release Date : 2018-05-08

Forecasting Principles And Practice written by Rob J Hyndman and has been published by OTexts this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-08 with Business & Economics categories.


Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.



Artificial Intelligence And Soft Computing


Artificial Intelligence And Soft Computing
DOWNLOAD
Author : Leszek Rutkowski
language : en
Publisher: Springer
Release Date : 2013-06-04

Artificial Intelligence And Soft Computing written by Leszek Rutkowski and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-04 with Computers categories.


The two-volume set LNAI 7894 and LNCS 7895 constitutes the refereed proceedings of the 12th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2013, held in Zakopane, Poland in June 2013. The 112 revised full papers presented together with one invited paper were carefully reviewed and selected from 274 submissions. The 57 papers included in the first volume are organized in the following topical sections: neural networks and their applications; fuzzy systems and their applications; pattern classification; and computer vision, image and speech analysis.



Foreign Exchange Rate Forecasting With Artificial Neural Networks


Foreign Exchange Rate Forecasting With Artificial Neural Networks
DOWNLOAD
Author : Lean Yu
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-02

Foreign Exchange Rate Forecasting With Artificial Neural Networks written by Lean Yu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-02 with Business & Economics categories.


The book focuses on forecasting foreign exchange rates via artificial neural networks. It creates and applies the highly useful computational techniques of Artificial Neural Networks (ANNs) to foreign-exchange-rate forecasting. The result is an up-to-date review of the most recent research developments in forecasting foreign exchange rates coupled with a highly useful methodological approach to predicting rate changes in foreign currency exchanges. Foreign Exchange Rate Forecasting with Artificial Neural Networks is targeted at both the academic and practitioner audiences. Managers, analysts and technical practitioners in financial institutions across the world will have considerable interest in the book, and scholars and graduate students studying financial markets and business forecast will also have considerable interest in the book. The book discusses the most important advances in foreign-exchange-rate forecasting and then systematically develops a number of new, innovative, and creatively crafted neural network models that reduce the volatility and speculative risk in the forecasting of foreign exchange rates. The book discusses and illustrates three general types of ANN models. Each of these model types reflect the following innovative and effective characteristics: (1) The first model type is a three-layer, feed-forward neural network with instantaneous learning rates and adaptive momentum factors that produce learning algorithms (both online and offline algorithms) to predict foreign exchange rates. (2) The second model type is the three innovative hybrid learning algorithms that have been created by combining ANNs with exponential smoothing, generalized linear auto-regression, and genetic algorithms. Each of these three hybrid algorithms has been crafted to forecast various aspects synergetic performance. (3) The third model type is the three innovative ensemble learning algorithms that combining multiple neural networks into an ensemble output. Empirical results reveal that these creative models can produce better performance with high accuracy or high efficiency.



Deep Learning For Time Series Forecasting


Deep Learning For Time Series Forecasting
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2018-08-30

Deep Learning For Time Series Forecasting written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-30 with Computers categories.


Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.



Non Linear Time Series


Non Linear Time Series
DOWNLOAD
Author : Kamil Feridun Turkman
language : en
Publisher: Springer
Release Date : 2014-09-29

Non Linear Time Series written by Kamil Feridun Turkman and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-29 with Mathematics categories.


This book offers a useful combination of probabilistic and statistical tools for analyzing nonlinear time series. Key features of the book include a study of the extremal behavior of nonlinear time series and a comprehensive list of nonlinear models that address different aspects of nonlinearity. Several inferential methods, including quasi likelihood methods, sequential Markov Chain Monte Carlo Methods and particle filters, are also included so as to provide an overall view of the available tools for parameter estimation for nonlinear models. A chapter on integer time series models based on several thinning operations, which brings together all recent advances made in this area, is also included. Readers should have attended a prior course on linear time series, and a good grasp of simulation-based inferential methods is recommended. This book offers a valuable resource for second-year graduate students and researchers in statistics and other scientific areas who need a basic understanding of nonlinear time series.



Singular Spectrum Analysis For Time Series


Singular Spectrum Analysis For Time Series
DOWNLOAD
Author : Nina Golyandina
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-01-19

Singular Spectrum Analysis For Time Series written by Nina Golyandina and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-19 with Mathematics categories.


Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small number of interpretable components such as trend, oscillatory components and noise. It is based on the singular value decomposition of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity are assumed for the time series. This makes SSA a model-free method and hence enables SSA to have a very wide range of applicability. The present book is devoted to the methodology of SSA and shows how to use SSA both safely and with maximum effect. Potential readers of the book include: professional statisticians and econometricians, specialists in any discipline in which problems of time series analysis and forecasting occur, specialists in signal processing and those needed to extract signals from noisy data, and students taking courses on applied time series analysis.



Artificial Neural Nets And Genetic Algorithms


Artificial Neural Nets And Genetic Algorithms
DOWNLOAD
Author : Andrej Dobnikar
language : en
Publisher: Springer Science & Business Media
Release Date : 1999-07-15

Artificial Neural Nets And Genetic Algorithms written by Andrej Dobnikar and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-07-15 with Computers categories.


From the contents: Neural networks – theory and applications: NNs (= neural networks) classifier on continuous data domains– quantum associative memory – a new class of neuron-like discrete filters to image processing – modular NNs for improving generalisation properties – presynaptic inhibition modelling for image processing application – NN recognition system for a curvature primal sketch – NN based nonlinear temporal-spatial noise rejection system – relaxation rate for improving Hopfield network – Oja's NN and influence of the learning gain on its dynamics Genetic algorithms – theory and applications: transposition: a biological-inspired mechanism to use with GAs (= genetic algorithms) – GA for decision tree induction – optimising decision classifications using GAs – scheduling tasks with intertask communication onto multiprocessors by GAs – design of robust networks with GA – effect of degenerate coding on GAs – multiple traffic signal control using a GA – evolving musical harmonisation – niched-penalty approach for constraint handling in GAs – GA with dynamic population size – GA with dynamic niche clustering for multimodal function optimisation Soft computing and uncertainty: self-adaptation of evolutionary constructed decision trees by information spreading – evolutionary programming of near optimal NNs